Palladium-Catalyzed Cyclizations of Polyenynes. A Palladium Zipper

Barry M. Trost* and Yian Shi
Contribution from the Department of Chemistry, Stanford University, Stanford, California 94305-5080

Received April 22, 1993*

Abstract

The cycloisomerization of polyenynes with a catalyst derived from $\operatorname{Pd}(0)$, acetic acid, and a ligand to polycycles depends upon the juxtaposition of unsaturation. The process involves the stages of initiation (by addition of Pd-H to an acetylene), propagation (by intramolecular carbopalladation), and termination (by β-hydrogen elimination). With 2 -homopropargylated 1,5 - and 1,6-dienes, monocyclizations via 5 -exo and 6 -endo modes dominate with the ratio dependent upon ligand. The 5 -exo mode is favored by tri-o-tolylphosphine, whereas triphenylstibine favors the 6 -endo mode. On the other hand, a 3-homoallyl-3-homopropargylcyclopentene undergoes smooth bicyclization even when triphenylphosphine is used as ligand. Combining $\operatorname{Pd}(0)$-catalyzed allylic alkylation to make the substrates with $\operatorname{Pd}(0)$-catalyzed cycloisomerization simplifies triquinane and azatriquinane synthesis. A 2-allyl-2-homopropargyl-1-methylenecycloalkane array cycloisomerizes to [4.3.3]propellanes and [3.3.3]propellanes. Methallyl alcohol serves as a basic building block to construct acyclic substrates for construction of spirocycles. Both terminal and internal acetylenes serve as suitable initiators provided the proper ligand is employed. With a terminal acetylene as initiator, triphenylphosphine proves satisfactory, but an internal acetylene requires triphenylstibine. High diastereoselectivity may accompany formation of the spirocycle. Increasing the number of double bonds increases the number of rings formed. Substrates bearing $3,4,5,6$, and 7 double bonds generate polyspiranes consisting of $3,4,5,6$, and 7 rings. The regio- and diastereoselectivity may be understood on the basis of a conformational analysis of the reactive intermediate. This atom economical approach for construction of polycycles can be considered as the equivalent of a palladium zipper in which the π orbitals are the teeth and the palladium complex is the tab. Closing the zipper stitches the π bonds into σ bonds with creation of the polycycles.

The most atom economical reactions involve simple additions which, when performed intramolecularly, arecycloisomerizations. A classical example is the Diels-Alder reaction, whose immense utility and importance underscore the importance of these concepts. The related Alder ene reaction ${ }^{1}$ has had much more limited applicability because of problems of chemoselectivity, high temperature, and restricted range of substrates. The evolution of a catalyst for this process might extend its scope. More importantly, processes not available in a thermal reaction may become feasible. In our evolution of a catalytic cycloisomerization of an enyne, as outlined in eq $1,{ }^{2}$ using a catalyst prepared by reacting a $\operatorname{Pd}(0)$ complex with acetic acid, ${ }^{3}$ we proposed the σ complex 1 as an intermediate which undergoes β-hydrogen elimination of H_{a} to yield the Alder ene product 2. A useful diversion from the Alder ene product is the prospect of a β-hydrogen elimination of H_{b} to give the synthetically valuable 1,3-dienes 3, a pathway not possible by a thermal process. ${ }^{2-4}$ This process is related to cyclizations that involve the Heck reaction ${ }^{5}$

[^0]
but differs significantly in that a vinyl halide or pseudohalide is not required.

The above rationale raises the question of intercepting 1 as a mechanistic probe and a synthetic opportunity for additional structural elaboration. We have shown the ability to effect a reductive cyclization in which we invoke interception of 1 by a silicon hydride. ${ }^{6}$ A very attractive prospect would be the interception of 1 by a remote unsaturation to create additional rings. In this paper, we explore the prospects for such a cycloisomerization, which is composed of three stages: initiation by addition of $\mathrm{Pd}-\mathrm{H}$ to an acetylene, propagation by intramolecular carbopalladation, and termination by β-hydrogen elimination. ${ }^{7}$ Contemporaneous to our studies, there have been excellent studies of polycyclizations involving the Heck reaction, ${ }^{8-10}$

[^1]which differ in terms of the initiation, a feature which can be quite important because of the sensitivity of the system to reaction conditions.
Initial Studies: Exo vs Endo Mode of Cycloisomerization. The polyenynes 4 and 5, prepared as in eq 2, became our first substrates.

(2)

Using our standard conditions of (dba) ${ }_{3} \mathrm{Pd}_{2} \cdot \mathrm{CHCl}_{3}(6)$ and acetic acid in the presence of a phosphine- like triphenylphosphine (TPP) or N, N^{\prime}-bis(benzylidene)ethylenediamine (BBEDA) as ligands in benzene even at room temperature led predominantly to the six-membered-ring product 7 rather than the five-membered ring 8 or the bicycle 9 (eq 3). For substrate 4, the ratios of 7a:8a:9a

were 2.8:1.2:1.0 and 17.9:1.0:2.9, respectively, with TPP and BBEDA as ligands. Selectivity for formation of the cyclohexene 7a could be optimized using triphenylstibene (TPS) as the ligand, which gave a 77% isolated yield of a 250:1.0:28 ratio of 7a:8a:9a, as determined by gas chromatographic analysis. Switching to tri-o-tolylphosphine (TOTP) as ligand led to smooth reaction to produce predominantly the cyclopentane product in 74% isolated yield and a 1.0:24.5:5.8 ratio of 7a:8a:9a. Using 0 -anisic acid instead of acetic acid with TOTP as ligand further increased the cyclopentane product (7a:8a:9a, 1.0:80:9.0, 42% yield). Significant yields of the bicycle 9 form upon (1) increasing acetic acid concentration and adding lithium acetate with TPP as ligand (7.2:1.0:4.7), (2) using 2-(diphenylphosphino)benzoic acid as ligand (74.0:1.0:33.0), or (3) increasing acid strength using TOTP as ligand $\left(\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{H}, 1.0: 0.0: 6.1 ; \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 1.4: 0.0: 1.0\right)$ (ratio of 7a:8a:9a). The remarkable sensitivity of the product composition to reaction conditions provides an opportunity to tune the nature of the cyclization.

Analysis of the NMR spectrum for 7a, 8a, and 9a provides easy differentiation. For 7a, the two doublets at $\delta 6.10$ and 5.72 $\left(J=9.8 \mathrm{~Hz}\right.$) in the ${ }^{1} \mathrm{H}$ NMR spectrum corresponded to the two endocyclic olefinic protons of the six-membered ring; a signal at $\delta 5.86$ (ddd, $J=17.1,10.3,7.5 \mathrm{~Hz}$) was assigned to the internal vinyl proton of the monosubstituted olefin; the multiplets at δ 5.03 were attributed to the methylene unit of the monosubstituted

[^2]Scheme I. Synthesis of $Z \cdot 3,5$-Disubstituted Cyclopentenes ${ }^{a}$

${ }^{a}$ (a) For 11a, dimethyl propargylmalonate, $2.5 \mathrm{~mol} \% 6,10 \mathrm{~mol} \%$ dppe, THF, $0{ }^{\circ} \mathrm{C}$ to room temperature, 55%; for $11 \mathrm{~b}, N$-allyl- p toluenesulfonamide, $2 \mathrm{~mol} \% 6,8 \mathrm{~mol} \% \mathrm{dppe}, \mathrm{BSA}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to room temperature, 60%. (b) $\mathrm{ClCO}_{2} \mathrm{CH}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 69 \%$ for 12a, 62% for 12b. (c) For 10a, dimethyl sodioallylmalonate, 4 mol $\%\left(\mathrm{Ph}_{3} \mathrm{P}\right){ }_{4} \mathrm{Pd}, 8 \% \mathrm{Ph}_{3} \mathrm{P}$, THF, reflux, 53%; for 10 b , dimethyl sodiopropargylmalonate, $6 \mathrm{~mol} \%\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}, 12 \mathrm{~mol} \% \mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}$, reflux, 91%.
olefin; the exocyclic methylene unit was indicated by a multiplet at $\delta 4.86$. In the ${ }^{13} \mathrm{CNMR}$ spectrum, six olefinic carbons resonated at $\delta 142.42,135.17,134.45,130.28,117.27$, and 112.36 , which indicated the existence of one monosubstituted olefin, one exocyclic olefin, and one 1,2 -disubstituted olefin. For 8 a , a multiplet at $\delta 5.87$ confirmed the existence of the internal vinyl proton of the monosubstituted olefin. The methylene unit of the monosubstituted olefin and two exocyclic methylene units appeared at δ 5.44 (bs, 1H), 5.39 (bs, 1H), 5.02 (m, 3H), and 4.89 (bs, 1H). In the ${ }^{13} \mathrm{C}$ NMR spectrum, six olefinic carbons resonated at δ $153.38,146.55,134.89,117.05$, and 105.22 (the high intensity of this peak indicated the overlap of the two exocyclic olefinic carbons), which suggested the presence of one monosubstituted olefin and two exocyclic olefins. For 9a, the two exocyclic methylene units resonated as two multiplets at $\delta 4.88$ and 4.78. In the ${ }^{13} \mathrm{C}$ NMR spectrum, signals at $\delta 155.57,150.90,106.50$, and 106.38 confirmed the existence of two exocyclic olefins.
Increasing the chain length of one of the olefinic arms as in 5 gives a substrate where similar trends are observed but with somewhat different responses to variables. For example, TPS, which is the preferred ligand for the 6 -endo product 7 a above, leads largely to recovered starting material with 5. Best yields of 8 b are obtained using dppf ($63 \%, 87 \%$ brsm $)^{1 t}$ or TOTP (65%) in the presence of acetic acid using 6 as the palladium source in benzene at room temperature. A 70% yield of the 6 -endo product 7 arises by simply switching to trimesitylphosphite. In contrast to the above case, no significant amounts of the bicyclic product form under any conditions.

Triquinane Skeleton

Inhibition of β-hydrogen elimination should promote polycyclization. The cyclopentene substrate 10 meets this requirement since a cis carbametalation generates a σ-palladium species lacking any cis β-hydrogens and is easily synthesized using $\operatorname{Pd}(0)$ catalyzed alkylations as outlined in Scheme I. Choice of ligand for the Pd-catalyzed reactions of the cyclopentadiene monoepoxide ${ }^{12}$ proved important, with dppe being preferred. ${ }^{13}$ The cis stereochemistry of the dialkylated products 10a and 10b derives from the significant differences in chemical shifts for the cyclopentyl methylene protons ($10 \mathrm{a} \delta 2.15, \mathrm{dt}, J=12.8,7.8 \mathrm{~Hz}$

[^3]and $\delta 1.36, \mathrm{td}, J=12.8,10.0 \mathrm{~Hz} ; 10 \mathrm{~b} \delta 2.30 \mathrm{dt}, J=13.3,7.8$ Hz and $\delta 1.44, \mathrm{dt}, J=13.3,9.2 \mathrm{~Hz}$) and ample precedent for Pd catalyzed reactions to proceed with net retention of configuration. ${ }^{14}$

Heating a benzene solution of dienyne 10 a with $2.5 \mathrm{~mol} \% 6$, $10 \mathrm{~mol} \% \mathrm{TPP}$, and $10 \mathrm{~mol} \%$ acetic acid at $53^{\circ} \mathrm{C}$ gives a 43% yield of the fully symmetric triquinane 13 (eq 4). The yield

13
increases to 57% upon raising the temperature to $105^{\circ} \mathrm{C}$ by switching to toluene as solvent. The shortened reaction time at the higher temperature decreases the amount of product decomposition. The structure of the product as 13 is readily apparent because of its high symmetry revealed in both the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The ${ }^{13} \mathrm{C}$ spectrum shows only 11 signals; the ${ }^{1} \mathrm{H}$ NMR spectrum shows two broad singlets at $\delta 5.06$ and 4.89 for both sets of exo methylene hydrogens and two singlets at $\delta 3.70$ and 3.69 for both sets of methyl esters. Both the cis,anti,cis and cis,syn,cis triquinanes are possible structures. Mechanistic considerations which suggest intermediates 14 and 15 combined with the cis stereochemistry of the starting material lead us to favor the latter as depicted in 13, on the basis of the facts that carbapalladations are known to be cis and σ-organopalladium intermediates do not interconvert rapidly. ${ }^{5}$. 14a-c

Reaction of substrate 10b explores the effect of a heteroatom (eq 5). NMR spectroscopy indicates that the anticipated

cycloisomerization product 16 forms. The ${ }^{13} \mathrm{C}$ NMR spectrum shows 21 different types of carbons with the appropriate chemical shifts for the two esters ($\delta 171.89,170.07$) and the two exocyclic methylene groups ($\delta 143.6,143.5,111.7,109.0$). The latter functional groups are confirmed by the absorptions at $\delta 5.00$, $4.94,4.91$, and 4.86 in the ${ }^{1} \mathrm{H}$ NMR spectrum. The protons on the two isolated methylene groups appear as AB patterns at δ 3.94 and $3.76(J=14.7 \mathrm{~Hz})(\alpha$ to N$)$ and $\delta 3.34$ and $2.66(J=$ 16.1 Hz) (α to malonate unit).

Propellanes

Changing the juxtaposition of the functional groups changes the nature of the ring system. Constructing a 2 -allyl-2-

[^4]Scheme II. Synthesis of
2-Allyl-2-homopropargyl-1-methylenecycloalkanes ${ }^{\text {a }}$

a (a) $\mathrm{NaH}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$, THF, room temperature, $90-98 \%$. (b) $\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{Zn}, \mathrm{TiCl}_{4}, \mathrm{THF}, 17 \%$, or $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}, \mathrm{NaCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{3}, \mathrm{DMSO}$, room temperature, 61%. (c) $\mathrm{LAH}, \mathrm{THF}, 0^{\circ} \mathrm{C}$. (d) $\mathrm{ClCOCOCl}, \mathrm{DMSO}$, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right){ }_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$. (e) $\mathrm{Zn}, \mathrm{CH} \equiv \mathrm{CCH}_{2} \mathrm{Br}$, THF. (f) TBDMSOSO ${ }_{2} \mathrm{CF}_{3}, 2,6$-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 22 \%$ overall from $18, n$ $=1$. (g) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 0^{\circ} \mathrm{C}, 35 \%$ overall from $18, n=2$.
homopropargyl-1-methylenecycloalkane provides an opportunity to construct propellanes (eq 6). The key becomes the initial

chemoselectivity for intramolecular carbapalladation to form a five-membered ring (eq 6, path a) rather than a six-membered ring (eq 6, path b). Scheme II summarizes the syntheses of the two substrates 17b and 17d.
Heating dienyne 17b under our standard conditions results in smooth conversion of the starting material to a single product (eq 7). The disappearance of both the acetylene and monosubstituted

olefins and appearance of two exocyclic methylene groups [δ 4.66-4.82 and 156.9 (156.5), 152.1 (152.7), 105.6 (105.5), 104.7 (104.3); note that $\mathbf{1 7 b}$ and 21 are mixtures of diastereomers, accounting for the doubling of the signals] confirm that the desired cyclization to the [3.3.3]propellane 21 occurred. Treating the homologue 17d under similar conditions produces a product accompanied by a very similar set of spectral changes, supporting formation of the [4.3.3]propellane 22 (eq 7). To demonstrate that the doubling of peaks indeed arises from the mixture of

Scheme III. Synthesis of Spirane Dienyne Precursors ${ }^{a}$

a (a) n - $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}$, TMEDA, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$, THF. (b) $\mathrm{CH}_{3} \mathrm{OCOCl}$, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 50 \%$ overall. (c) (dba) ${ }_{3} \mathrm{Pd}_{2} \cdot \mathrm{CHCl}_{3}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}, 40-50^{\circ} \mathrm{C}, 62-$ 83%. (d) (i) (dba) ${ }_{3} \mathrm{Pd}_{2} \cdot \mathrm{CHCl}_{3}, \mathrm{TsNH}_{2}, \mathrm{BSA}, \mathrm{THF}$, room temperature, 79%; (ii) $\mathrm{NaH}, \mathrm{THF}, \mathrm{RC} \equiv \mathrm{CCH}_{2} \mathrm{Br}, 6{ }^{\circ} \mathrm{C}, 67-82 \%$.
diastereomers present, the acetate 22 is hydrolyzed $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3}\right.$. OH , room temperature), oxidized ($\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature) and isomerized by olefin migration (DBU, CHCl_{3}, room temperature) to generate the [4.3.3]propellenone 23 as a single isomer. The conjugated enone is revealed by IR $\left(1689 \mathrm{~cm}^{-1}\right),{ }^{1} \mathrm{H}$ NMR ($\delta 5.90,1 \mathrm{H}, \mathrm{bs} ; 2.02,3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}$), and ${ }^{13} \mathrm{C}$ NMR ($\delta 213.3,181.9,130.7$) spectra.

Spiranes

The ring system created becomes a spirane if a 1,1 -dialkylated olefin such as 24 is employed (eq 8). Scheme III summarizes the synthesis of the initial set of dienynes. Using the methallyl alcohol dianion previously exploited in this laboratory, ${ }^{15}$ the pivotal intermediate 25 (Scheme III) is readily available.

Simply exposing dienyne 26 or 27 to 2.5% (dba) ${ }_{3} \mathrm{Pd}_{2} \cdot \mathrm{CHCl}_{3}$, TPP, and acetic acid in benzene even at room temperature leads to smooth consumption of starting material (eq 9). Following

the reaction by gas chromatography revealed a significant increase in cleanliness by switching the ligand to TOTP. Once again ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy revealed the replacement of all the unsaturations of the starting materials (except for the phenyl groups of the sulfones in 27) by two exocyclic methylene groups (e.g., for $29{ }^{1} \mathrm{H}$ NMR $\delta 4.86 \mathrm{~m} ;{ }^{13} \mathrm{C}$ NMR δ 155.2, $151.08,106.1$, 105.1 ; for $30{ }^{1} \mathrm{H}$ NMR $\delta 4.89,4.86,4.64,4.62$; ${ }^{13} \mathrm{C}$ NMR δ 1.52.6, 150.4, 106.8, 105.6), consistent with formation of the

[^5]Scheme IV. Diastereoselectivity of Spirane Formation ${ }^{a}$

${ }^{a}$ (a) $\mathrm{X}=\mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}=\mathrm{CH}_{2}, \mathrm{Hg}(\mathrm{OAc})_{2}, 180-190^{\circ} \mathrm{C}, 41 \%$. (b) $\mathrm{X}=\mathrm{Br}, \mathrm{LDA},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}=\mathrm{NC}_{6} \mathrm{H}_{11}, \mathrm{THF},-78$ to $-10^{\circ} \mathrm{C}, 77 \%$. (c) $n-\mathrm{C}_{4} \mathrm{H} 9 \mathrm{Li}, \mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{OCH}_{3}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 83-92 \%$. (d) TBD$\mathrm{MSOSO}_{2} \mathrm{CF}_{3}$, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 86-95 \%$.
cycloisomers 29 and 30 . To test the importance of the gem-alkyl effect and simultaneously the prospect for the synthesis of heterospiranes, we examined the nitrogen analogue 28a. Using the conditions as outlined for 29 and 30 gives quite comparable results, producing the cycloisomer 31 at room temperature in 89\% yield.

Converting the terminal acetylene to an internal acetylene significantly retards the reaction. Dienyne 28b does not react satisfactorily at room temperature but requires $60^{\circ} \mathrm{C}$. Both TPP and TOTP prove less satisfactory as ligands compared to TPS. With these modifications, cycloisomerization of 28b occurs readily to produce azaspirane 32 in 86% yield as a single geometric isomer, which is assigned as depicted on the basis of mechanistic considerations.

The requirement for TPS as ligand appears general for the internal acetylene initiators. To examine the diastereoselectivity of this process, we chose to examine the related internal acetylenic substrates $\mathbf{3 4 a}$ and $\mathbf{3 4 b}$, which are prepared as outlined in Scheme IV.

Even though the initiator is a disubstituted acetylene, cycloisomerizations of both 34a and 34b proceed at room temperature in the presence of TPS as ligand (eq 10). The successful

cycloisomerization of 34a clearly demonstrates the lack of a requirement for gem-alkyl substitution in the tethers in all carbon substrates. That gem-alkyl substitution does have a rate effect is apparent in the 3 -fold difference in reaction time between substrates 34 a and $\mathbf{3 4 b}$, the latter reacting the faster. The gemalkyl groups also have a marked effect on diastereoselectivity. Whereas the substrate possessing the simple tether 34a provides a 1.4:1.0 ratio of the two diastereomeric products $35 \mathrm{a}: 36 \mathrm{a}$, this ratio improves dramatically to $10: 1$ of $\mathbf{3 5 b}: 36 \mathrm{~b}$ with the substrate bearing the gem-dimethyl groups 34b.

Scheme V. Synthesis of Dispirane Substrates ${ }^{a}$

${ }^{a}$ (a) $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}$, TMEDA, ether, $-78^{\circ} \mathrm{C}, 25 \mathrm{X}=\mathrm{Br}, 84 \%$. (b) $\mathrm{CH}_{3} \mathrm{OCOCl}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 85 \%$
(c) $2.5 \%(\mathrm{dba})_{3} \mathrm{Pd}_{2} \cdot \mathrm{CHCl}_{3}, 20 \% \mathrm{TPP}$, 38, THF, $45-50^{\circ} \mathrm{C}, 95-99 \%$.

Polyspiranes

The fact that each carbametalation produces a new C-Pd bond which ultimately is destroyed by β-hydrogen elimination suggests the possibility that the cyclization process may continue if additional unsaturation is present. Scheme V outlines the synthesis of the substrates for tricyclization which were chosen to test the effect of steric bulk of the tether substituents and the role of an internal vs terminal acetylenic initiator.

The malonate substrate 39a cycloisomerizes to a mixture of spiranes (40a) and six-membered ring products 41a and 41b (eq 11). In agreement with our initial cyclization studies, phosphine

ligands favor 5 -exo cyclization to form spiranes and stibine favors 6 -endo cyclization to the methylenecyclohexenes 41 a and 41 b . In contrast to this result, only polyspirane formation is observed upon cycloisomerizing the bis-sulfone substrates 39b and 39c.

40b $\mathrm{R}=\mathrm{H}$
$40 \mathrm{C} R=\mathrm{CH}_{2} \mathrm{OCH}_{3}$
Both cyclizations proceed at room temperature, with the latter requiring about twice the reaction time. Following the general trends previously established, TOTP proves efficacious as the ligand for the cyclization of the terminal acetylenic substrate 39b and TPS is the preferred ligand for the cyclization of the disubstituted acetylenic substrate 39c. NMR spectroscopy indicates a surprisingly high diastereoselectivity of $7: 1$, in which the tentatively assigned major diastereomer is depicted in $\mathbf{4 0 b}$. The synthetic utility of the sulfone groups and further characterization of the dispiranes are provided by ozonolysis in methanol in the presence of triethylamine whereby the β-methoxy enone

42 is directly obtained as a $7: 1$ mixture of diastereomers. Both 40 b and 40 c produce the same enone, but the diastereomeric ratio is somewhat lower in the latter case (4:1).

The method of synthesis as outlined in Schemes III and V allows easy iteration of the sequence to create homologous substrates. Equation 13 illustrates the construction of the trispirane substrates $43 \mathrm{a}-\mathrm{c}$, which ultimately derive from three molecules of methallyl alcohol, allyl bromide, and the malonate or bis-sulfone 38a-c.

a) $\begin{aligned} & \mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3} \mathrm{R}^{\prime}=\mathrm{H} \\ & \mathrm{B}=\mathrm{SO}_{2} \mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}\end{aligned}$
c) $R=\mathrm{SO}_{2} \mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$
b) $\mathrm{R}=\mathrm{SO}_{2} \mathrm{Ph}, \mathrm{R}^{-}=\mathrm{H}$
c) $\mathrm{R}=\mathrm{SO}_{2} \mathrm{Ph}, \mathrm{R}^{\circ}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$

Increasing the number of unsaturations does affect the reactivity of the substrates. The malonate 43a parallels the behavior of malonate 39a in that it reacts to form a mixture of the trispiranes 44a (mixture of diastereomers) and the cyclohexenes analogous to 41a and 41b. Cyclization of the corresponding bis-sulfone 43b becomes significantly slower as well. While NMR spectroscopy indicates that the major product is likely the trispirane 44b (two exocyclic methylene groups $\delta 4.87,4.84,4.61$, and 4.56), a significant number of additional products likely resulting from 6 -endo cyclization and/or dimerizations involving the terminal acetylene make the reaction unattractive. On the other hand, the substrate bearing the internal acetylenic initiator 43c cyclizes very smoothly and cleanly in the presence of TPS as ligand at 40 ${ }^{\circ} \mathrm{C}$ to give the trispirane 44 c in 84% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum is surprisingly simple, especially considering that there are four possible diastereomers. Absorptions appear at $\delta 5.26(\mathrm{~m}, 1 \mathrm{H})$ and $4.82(\mathrm{~m}, 2 \mathrm{H})$ for the olefinic protons, at $\delta 3.80(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}$) and $3.32(\mathrm{~s}, 3 \mathrm{H})$ for the methoxymethyl protons, at δ 3.31 for the allylic methylene protons adjacent to the sulfone units, at $\delta 2.70$ for the nonallylic methylene protons adjacent to the sulfone, at δ 2.2-2.3 for the other four allylic methylene protons, and at $\delta 1.5-1.8$ for the remaining protons. The ${ }^{13} \mathrm{C}$ NMR spectrum shows partial doubling of the absorptions for the olefinic carbons at $\delta 152.71$ (152.67), 149.82 (149.60), 116.61, and 105.56 (105.47), suggesting that two of the four possible diastereomers dominate.

Confirmation of this interpretation derives from the oxidative cleavage which forms enone 45 (eq 14). The ${ }^{13} \mathrm{C}$ NMR spectrum exhibits four lines at $\delta 58.78,58.59,58.39$, and 58.18 in the approximate ratio of 1.1:4.0:4.6:1.0 for the methoxy carbon, again supporting formation of two major diastereomers. Since for-

Scheme VI. Iterative Synthesis of Polyenynes

${ }^{a}$ (a) (i) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CCl}_{4}$ reflux, $70-81 \%$; (ii) n - $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}$, TMEDA, $\mathrm{HOCH}_{2} \mathrm{C}_{\left(\mathrm{CH}_{3}\right)}=\mathrm{CH}_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to room temperature, $60-78 \%$. (b) $\mathrm{CH}_{3} \mathrm{OCOCl}$, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, $86-93 \%$. (c) 2.5% (dba) $\mathrm{Pd}_{2} \cdot \mathrm{CHCl}_{3}, 20 \%$ TPP, THF, $50{ }^{\circ} \mathrm{C}, 72-92 \%$.

45
mation of the dispirane 40 c shows about a $4: 1$ selectivity, the major stereochemistry for the spiro fusions for rings \mathbf{A}, B, and C of 44 c are presumably the same in both 40 c and 44 c , with the spiro fusion between rings C and D being stereorandom.

How many rings can be formed in one step by this palladiumcatalyzed cycloisomerization? Repetition of the alkylation sequence as shown in step a in Scheme VI permits ready assembly of a series of homologous alkylating agents 46b, for $n=2$ twice, $n=3$ three times, and $n=4$ four times.
$\operatorname{Pd}(0)$-catalyzed alkylation of each of these generates the pentaenyne 47a, hexaenyne 47b, and heptaenyne 47c in excellent overall yields. Using what has now become our standard conditions for a substrate bearing a disubstituted acetylenic initiator [$2.5 \%(\mathrm{dba})_{3} \mathrm{Pd}_{2} \cdot \mathrm{CHCl}_{3}, 10 \% \mathrm{Ph}_{3} \mathrm{Sb}, \mathrm{HOAc}, \mathrm{PhH}, 50-$ $65^{\circ} \mathrm{C}$], the cyclization of each substrate is followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using $\mathrm{C}_{6} \mathrm{D}_{6}$ as solvent. The steady replacement of the signals attributable to the vinyl protons of the starting materials by the same signal pattern discussed for 44 c indicates that cyclization occurs completely to form the tetraspirane 48a (86%), pentaspirane 48b (79\%), and heptacyclic 48c (77\%). Further confirmation for the penta-, hexa-, and heptacyclic nature of these products derives from ozonolysis to the enones 49a, 49b, and 49c, respectively.

In spite of the fact that there are 8,16 , and 32 possible diastereomers for the respective cyclization products, the NMR spectra are deceptively simple. For example, the ${ }^{13} \mathrm{C}$ spectrum of 49a displays only three lines at $\delta 102.94,102.89$, and 102.79 in a ratio of 3.6:2.3:1 for the olefinic carbon α to the carbonyl group, indicating only three out of eight isomers being detectable. Examining the methoxy region is more fruitful for the hexacycle 49b, in which only four peaks at $\delta 58.70,58.52,58.35$, and 58.19 in the ratio of 1.1:4.3:4.4:1.0 are observable, revealing only four out of 16 stereoisomers, two of which predominate. The region for the olefinic carbon α to the carbonyl group of 49c displays only two signals at $\delta 102.93$ and 102.82 in a ratio of $3: 1$, revealing only two out of 32 isomers. Because most of the stereogenic centers are remote from the functionality, it is impossible to ascertain exactly how many isomers are present and what they are.

Discussion

The palladium-catalyzed cycloisomerizations using a catalyst derived by mixing a $\mathrm{Pd}(0)$ complex, a phosphine or stibine ligand, and a carboxylic acid involves three stages: (1) initiation, (2)

propagation, and (3) termination (see Scheme VII). The initiation requires an acetylene, either monosubstituted or disubstituted. The absolute requirement of an acetylenic initiator means that the proposed hydridopalladium carboxylate intermediate has a very high chemoselectivity for attack on the triple bond even in the presence of overwhelming statistical odds favoring doublebond addition because of the number of double bonds present such as in 47c. Furthermore, addition to the triple bond must dominate over insertion into the acetylenic hydrogen. In fact, as the reactions slow, this latter process becomes problematical. Thus, formation of the dispirane occurs smoothly with a terminal acetylenic initiator, but problems arise with larger substrates. On the other hand, the internal acetylenic initiator succeeds, even effecting an astounding heptacyclization! The choice of ligand proves critical. The internal acetylenic initiator requires a poorer donor and better acceptor ligand than a phosphine, a balance reached with TPS. ${ }^{16}$

Regioselectivity of the hydropalladation and subsequent carbapalladation steps is essential. ${ }^{8-10.17,18}$ Bidentate coordination as depicted in eq 1 may be required. Failure to effect satisfactory

[^6]bicyclization of $\mathbf{4}$ or 5 may, in part, derive from coordination of the additional site of unsaturation, thereby favoring a 6 -endo mode 50 rather than the 5 -exo mode 51 . In support of this

50

51
hypothesis, the monosaturated analogue of 5 , i.e., 52 , cyclizes solely to the five-membered-ring product 53 with none of the isomeric cyclohexene 54 (eq 18). In contrast to this result, the

diacetylenic substrate 55 , which possesses the more strongly coordinating acetylenic linkage as a remote binding substituent, cyclizes preferentially (ratio of $56: 571: 16$) to the methylenecyclohexene 57 (eq 19) in the presence of the more weakly coordinating TPS as ligand but to the dimethylenecyclopentane 56 only in the presence of a phosphine ligand. ${ }^{10 \mathrm{~b}}$

Increasing the distance to the remote binding site which may facilitate internal coordination may also divert the reaction to the 6 -endo mode. Thus, cycloisomerziation of dienyne 58 only produces the methylenecyclohexenes 59 and 60 . A very subtle

effect of conformation on this regioselectivity is observed in polycyclizations in switching from the diester as in 39a and 43a to the corresponding bis-sulfones as in 39b and 43b whereby the

[^7]sterically more demanding sulfones favor the 5 -exo mode. ${ }^{17}$ The $\mathrm{A}_{1,3}$ type steric strain between \mathbf{X} and the palladium-substituted olefinic methylene group in $\mathbf{5 0}$ may account for this observation.

An alternative mechanism for formation of the six-memberedring product involves homoallyl cyclopropylcarbinyl homoallyl rearrangement ($\mathbf{6 0}$ to $\mathbf{6 1}$ to $\mathbf{6 2}$) as in eq 21 . Such a mechanism

(21)
has been invoked in related cyclizations initiated by reactions of vinyl halides and $\operatorname{Pd}(0) .^{8}$ A drawback to this proposal is the requirement that cyclopropane formation from $\mathbf{6 0}$ must be faster than or at least competitive with β-hydrogen elimination. ${ }^{19,20}$ The substituent effects are also more difficult to rationalize. Nevertheless, this option must be considered to be viable especially in light of recent observations.

The diastereoselectivity of the cyclization depicted in eq 10 derives from consideration of the reductive cyclization previously observed (eq 22), which is understood on the basis of the strong

destabilization of conformer 63 when $R \neq H .{ }^{21}$ Using this analogy, the relative energies of the two conformers 65 and 66 become similar when $\mathrm{R}=\mathrm{H}$, producing a nearly equimolar mixture of the diastereomeric spiranes (eq 23). When $\mathrm{R}=\mathrm{CH}_{3}$, the strong destabilization of conformer 65 leads to preferential reaction via conformer 66 to give the preference for diastereomer 35.

Scheme VII. Cycloisomerization of Spiranes

Analysis of the two reacting conformers 67 and 68 for the dispirane formation of eq 12 (see eq 24) suggests that the selectivity

derives from thrusting the exocyclic alkylidene group in $\mathbf{6 7}$ over the face of the newly forming five-membered ring, thereby favoring the sterically more accessible conformation 68 . This model also accommodates the observed small decrease in diastereoselectivity when $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$ since enhanced nonbonded interactions between this substituent and the forming ring are somewhat larger in 68 than in 67 . Once we move beyond the dispirane stage, the source of the diastereoselectivity disappears with respect to both the model and the experiment. Thus, the tetracycle 44c exists as a mixture of four diastereomers in a 1.1:4.0:4.6:1.0 ratio, which is consistent with a $\sim 4: 1$ diastereoselectivity for formation of the dispiro compound and the final spiro center being formed stereorandomly.

As a result, all higher spiranes 48a-c are undoubtedly mixtures of predominantly 4,8 , and 16 diastereomers (assuming that the initial spirocyclization occurs with the same diastereoselectivity as above). Depending upon the stereochemistry, these polyspiranes may have quite different molecular shapes ranging from rigid rods to molecular bowls, as depicted in Figure 1. Prospects for controlling stereochemistry remain a goal for future endeavors. At this juncture, the ease of building up the requisite acyclic
substrates from methallyl alcohol by repeated iteration of the same two-step sequence makes this approach to polyspiranes very simple. The limit in number of spiranes has not been reached. The facts that the yield of polycyclization is virtually independent of the number of rings being formed and that following the reaction by NMR spectroscopy permits the observation that the signals for the starting material are smoothly replaced by the product without the buildup of any detectable intermediates or production of significant byproducts suggest that much larger polyspiranes or "molecular ropes" may be formed.

This process may be likened to a zipper. Viewing the π orbitals as the teeth and the palladium catalyst as the tab, pulling the palladium across the π bonds converts them into σ bonds with accompanying ring formation (closing the zipper). The ultimate shape of the polycycle depends upon the juxtaposition of

Figure 1. Computed molecular models of three possible diastereomers of heptacyclic spirane 48c.
unsaturation, with three architectures being illustrated so far: fused polycycles, propellanes, and spiranes. The production of fused polycycles by this method benefits from the ease of access of the cyclization substrates by $\operatorname{Pd}(0)$-catalyzed alkylations. \mathbf{A} slight variation from that depicted in Scheme I, as depicted in eq 25 , in which the 3,5 -dicarboxylate 69 is employed as a surrogate for cyclopentadiene monoepoxide, converts this triquinane and azatriquinane synthesis into an asymmetric one. ${ }^{22}$

It is to be noted that, in each case, the product is a simple isomer of the starting material. Cycloisomerizations constitute a highly a tom economical approach for ring construction. Related studies revolve around the employment of an oxidative addition of a $\operatorname{Pd}(0)$ complex with vinyl halides and pseudohalides in initiating cyclization and polycyclizations. ${ }^{8-10,17-19,23}$ To the extent that the halide or pseudohalide coordinates to the metal, such interaction may have a significant effect on the selectivity. ${ }^{24}$ However, parallels between our observations and these Heck type cyclizations do exist, further supporting the mechanistic proposals presented herein. Intrinsically, this latter strategy is less atom economical than the cycloisomerizations described above. To the extent that the vinyl halides are prepared from the corresponding acetylenes, this strategy also becomes somewhat less efficient. On the other hand, the restriction of acetylenes with respect to incorporation into cyclic initiators makes the Heck cyclization applicable to some cases inaccessible by cycloisomerization. ${ }^{.0}$ Thus, both methods should find important utility in synthetic chemistry.

Experimental Section

Reactions were generally run under a positive pressure of dry nitrogen. Anhydrous solvents or reaction mixtures were transferred by oven-dried syringe or cannula. Solvents were generally distilled before use: acetonitrile, benzene, dichloromethane, dichloroethane, diisopropylamine, dimethylformamide, lutidine, pyridine, and triethylamine from calcium hydride; ether and tetrahydrofuran (THF) from sodium benzophenone ketyl; dimethyl sulfoxide was dried using freshly activated 3A molecular sieves. All reactions were run under a blanket of nitrogen.

Flash chromatography following the method of Still ${ }^{25}$ employed E. Merck silica gel (Kieselgel 60, 200-400 mesh). Analytical thin layer chromatography was performed with $0.2-\mathrm{mm}$ coated commercial silica gel plates (E . Merck, DC-Plaskitkfolien, Kieselgel $60 \mathrm{~F}_{254}$).

[^8]Proton nuclear magnetic resonance spectra were measured at 200, 300 , or 400 MHz on a Varian Gemini 200 , Gemini 300 , or Varian XL400 instrument, respectively as indicated. Chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane and determined relative to the proton signal of the solvent ($\mathrm{CDCl}_{3}, 7.26 \mathrm{ppm}$). NMR data are reported in the following form: chemical shift (multiplicity, coupling constant(s) in hertz, number of hydrogens). Splitting patterns are designated as s , singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet; b, broad. ${ }^{13} \mathrm{C}$ NMR spectra were fully decoupled, and chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane and determined relative to the carbon signals of the solvent ($\mathrm{CDCl}_{3}, 7.0 \mathrm{ppm}$).

Infrared spectra were recorded in 0.1 mm path length sodium chloride cavity cells on a Perkin-Elmer 1420 ratio-recording infrared spectrophotometer using polystyrene as a reference ($1601 \mathrm{~cm}^{-1}$) or on a Nicolet 205 FT-IR spectrometer and are reported in wavenumbers (cm^{-1}).

Melting points were determined using a Thomas-Hoover oil bath apparatus in open capillary tubes and are uncorrected. Boiling points are also uncorrected.

Analytical gas chromatography was performed on a Varian 3700 gas chromatograph using a $25 \mathrm{~m} \times 0.25 \mathrm{~mm}$ poly(dimethylsiloxane) column from Alltech.

Microanalyses were performed by Robertson Laboratory, Inc., Madison, NJ. High-resolution mass spectra were performed by the mass spectrometry facility of the University of California at San Francisco.

Preparation of \boldsymbol{N}-Methoxy- \boldsymbol{N}-methyl-4-pentynamide. To a $-78^{\circ} \mathrm{C}$ solution of lithium diisopropylamide prepared from diisopropylamine (6.98 $\mathrm{mL}, 49.8 \mathrm{mmol}$) and n-butyllithium ($32.3 \mathrm{~mL}, 47.7 \mathrm{mmol}$ in hexane) in 25 mL of THF was added dropwise $4.28 \mathrm{~g}(41.52 \mathrm{mmol})$ of N-methoxy-N-methylacetamide ${ }^{26}$ in 5 mL of THF. After being stirred at $-78^{\circ} \mathrm{C}$ for 1 h , the mixture was added to a solution of propargyl bromide (3.77 $\mathrm{mL}, 49.9 \mathrm{mmol})$ in HMPA (14.5 mL) and THF (10 mL) at $-78^{\circ} \mathrm{C}$. After being stirred at $-78^{\circ} \mathrm{C}$ for 5 h , the mixture was warmed to room temperature during 30 min , and stirred at room temperature for 3 h . The mixture was then quenched with 5% aqueous sodium bisulfate solution and concentrated. The residue was extracted with ether ($3 \times 40 \mathrm{~mL}$). The combined ether layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (hexane:ether $=1: 1.5$) to afford the title compound ($2.44 \mathrm{~g}, 42.5 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 1.97$ ($\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$). Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right): 141.0790$. Found: 141.0803.

Preparation of 4-(tert-Butyldimethylsiloxy)-4-vinyl-1-octen-7-yne (4). To a solution of the above Weinreb amide ${ }^{26}(5 \mathrm{~g}, 35.5 \mathrm{mmol})$ in THF (50 mL) was added vinylmagnesium bromide (0.97 M in THF) (73.2 mL , 71.0 mmol) at $-78^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 1 h (GC showed no starting material present, and one major product was formed), the mixture was poured into ether-5\% aqueous sodium bisulfate solution at $0^{\circ} \mathrm{C}$ and extracted with ether $(3 \times 50 \mathrm{~mL})$. The combined ether layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. The solvent was removed by distillation to give the crude ketone for the next reaction.

To a solution of the above ketone in THF (50 mL) was added an excess of allylmagnesium bromide dropwise at $-78^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 1 h (GC showed no starting material present, and one major product was formed), the mixture was poured into ether-saturated aqueous ammonium chloride at $0^{\circ} \mathrm{C}$ and extracted with ether. The combined ether layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give the crude alcohol for the next reaction.

To a solution of the above alcohol and 2,6-lutidine ($8.2 \mathrm{~mL}, 70.1$ mmol) in dichloromethane (35 mL) was added TBDMSOTf ${ }^{27}$ (12.1 mL , 52.6 mmol) slowly at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 30 min (GC showed no starting material present), the mixture was diluted with dichloromethane and washed with saturated aqueous sodium bicarbonate solution and brine, respectively, dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$), filtered, concentrated, and flash chromatographed (hexane) to give compound 4 as a colorless liquid ($3.5 \mathrm{~g}, 37 \%$ overall three steps). IR (CDCl_{3}): 3314, $2134,1636,1252 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.72-5.84(\mathrm{~m}$, 2H), 5.02-5.22 (m, 4H), 2.34 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.92$ ($\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.81(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H})$, $0.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.51,133.90,117.79$, $113.81,84.98,76.91,67.81,45.47,38.83,26.17,25.97,18.53,13.00$, $-1.96,-2.02$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right): 249.1676$. Found: 249.1680.
(26) Cf.: Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
(27) Corey, E. J.; Cho, H.; Rucker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455.

Preparation of 3-Allyl-3-(tert-butyldimethylsiloxy)-6-methylenecyclohexene (7a). Substrate $4(0.060 \mathrm{~g}, 0.23 \mathrm{mmol})$ followed by acetic acid $(13.2 \mu \mathrm{~L}, 0.23 \mathrm{mmol})$ was added to a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}{ }^{28}$ $(0.006 \mathrm{~g}, 0.0058 \mathrm{mmol})$ and triphenylstibine $(0.008 \mathrm{~g}, 0.023 \mathrm{mmol})$ in 2.0 mL of benzene. After being stirred at room temperature for 6 h , the mixture was concentrated and flash chromatographed (hexane) to give $7(0.030 \mathrm{~g}, 50 \%)$ plus a mixture of isomers $(0.016 \mathrm{~g})$ (combined yield 77%). IR (CDCl_{3}): 3086, 3026, 2964, 2944, 2906, 2866, 1636, 1596, $1252,1090,1066,1006,836 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.10$ (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.86 (ddd, $J=17.1,10.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$ (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}$, $3 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.42,135.17,134.45,130.28,117.27,112.36$, $72.08,47.41,35.73,26.90,25.80,18.25,-2.06,-2.42$. Calcd for $\mathrm{C}_{13} \mathrm{H}_{23}{ }^{-}$ OSi $\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5}\right):$ 223.1519. Found: 223.1518.

Preparation of 1-Allyl-1-(tert-butyldimethylsiloxy)-2,3-bis(methylene)cyclopentane (8a). Run A. Substrate $4(0.200 \mathrm{~g}, 0.76 \mathrm{mmol})$ followed by acetic acid ($44.0 \mu \mathrm{~L}, 0.768 \mathrm{mmol}$) was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ $(0.020 \mathrm{~g}, 0.0193 \mathrm{mmol})$ and tri-o-tolylphosphine $(0.023 \mathrm{~g}, 0.0757 \mathrm{mmol})$ in 5 mL of benzene. The mixture was stirred at room temperature for 8 h , concentrated, and flash chromatographed (hexane) to give a mixture of isomers (7a:8a:9a $=1.0: 24.5: 5.8)(0.147 \mathrm{~g}, 74 \%)$.

Run B. Substrate $4(0.100 \mathrm{~g}, 0.38 \mathrm{mmol})$ followed by o-anisic acid ($0.00576 \mathrm{~g}, 0.038 \mathrm{mmol}$) was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.010 \mathrm{~g}, 0.0097$ mmol) and tri-o-tolylphosphine ($0.0115 \mathrm{~g}, 0.038 \mathrm{mmol}$) in 3 mL of benzene. The mixture was stirred at room temperature for 44 h , concentrated, and flash chromatographed (hexane) to give $8 \mathbf{a}(0.026 \mathrm{~g}$, 26%) plus a mixture of isomers (0.016 g) (combined yield 42%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{t}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 3 \mathrm{H}), 4.89(\mathrm{bs}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=$ $14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$, 002 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.38,146.55,134.89$, $117.05,105.22,82.73,45.01,36.96,29.32,25.83,18.28,-2.42,-2.73$. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{OSi}\left(\mathrm{M}^{+}\right)$: 264.1910 . Found: 264.1907.

Preparation of 5-(tert-Butyldimethylsiloxy)-5-vinyl-1-nonen-8-yne (5). To a solution of the Weinreb amide ($0.52 \mathrm{~g}, 3.69 \mathrm{mmol}$) in THF (10 mL) was added an excess of 3-butenylmagnesium bromide at $0^{\circ} \mathrm{C} .{ }^{29}$ After reaction and workup as for the preparation of 4 , the solvent was removed by distillation to give the crude ketone for the next reaction.

To a solution of the above ketone in THF $(10 \mathrm{~mL})$ was added an excess of vinylmagnesium bromide at $0^{\circ} \mathrm{C}$. After reaction and workup as before, the combined ether layers were concentrated to give the crude alcohol for the next reaction.

To a solution of the above alcohol and 2,6 -lutidine $(0.85 \mathrm{~mL}, 7.38$ mmol) in dichloromethane (4 mL) was added TBDMSOTf (1.25 mL , 5.53 mmol) slowly at $0^{\circ} \mathrm{C}$. After reaction and workup as before, flash chromatography (hexane) gave $5(0.197 \mathrm{~g}, 19 \%$ overall three steps). IR $\left(\mathrm{CDCl}_{3}\right): 3291,2111,1639,1255,1044,832 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 5.79$ (ddd, $\left.J=17.2,10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.73$ (dd, $J=17.2$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.20(\mathrm{dd}, J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (dd, $J=10.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.00 (dd, $J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94 (dd, $J=10.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H})$, $1.62(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.50,138.62,114.30,113.92,84.90,67,86,39.69$, $39.26,28.24,25.99,18.57,13.19,-2.10$. Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{OSi}\left(\mathrm{M}^{+}-\right.$ CH_{3}): 263.1832. Found: 263,1827.

Preparation of 3-(3'-Butenyl)-3-(tert-butyldimethylsiloxy)-6-methylenecyclohexene (7 b). Substrate $5(0.0632 \mathrm{~g}, 0.23 \mathrm{mmol}$) followed by acetic acid ($13.2 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.0060$ $\mathrm{g}, 0.0058 \mathrm{mmol})$ and trimesityl phosphite $(0.00996 \mathrm{~g}, 0.023 \mathrm{mmol})$ in 2 mL of benzene. The mixture was stirred at room temperature for 48 h , concentrated, and flash chromatographed (hexane) to give compound $7 \mathrm{~b}(0.038 \mathrm{~g}, 60 \%)$: IR (CDCl_{3}): 1637, 1595, 1252, $1103,1067,1008$, $840 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.83 (ddd, $J=16.8,10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ (bd, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.93 (bd, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (bs, 1H), 4.85 (bs, 1H), $2.50(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.64$ $(\mathrm{m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.49,139.27,135.67,129.95,114.02,112.17$, 72.27, 42.01, 35.76, 27.99, 27.08, 25.81, 18.25, -2.09, -2.36. Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{OSi}\left(\mathrm{M}^{+}\right): 278.2067$. Found: 278.2071.

Preparation of 1-Butenyl-1-(tert-butyldimethylsiloxy)-2,3-bis(methylene)cyclopentane (8 b). Substrate $5(0.0385 \mathrm{~g}, 0.138 \mathrm{mmol}$) followed

[^9]by acetic acid ($1.6 \mu \mathrm{~L}, 0.0276 \mathrm{mmol}$) was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ $(0.00358 \mathrm{~g}, 0.00346 \mathrm{mmol})$ and tri-o-tolylphosphine ($0.00629 \mathrm{~g}, 0.0207$ mmol) in 1.0 mL of benzene. The mixture was stirred at room temperature for 48 h , concentrated, and flash chromatographed (hexane) to give 8 as a colorless oil ($0.0195 \mathrm{~g}, 51 \%$). IR (CDCl_{3}): $1640,1472,1256,1194$, $1105 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H})$, $5.40(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ $(\mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.15$ $(\mathrm{m}, 2 \mathrm{H}), 1.60-1.87(\mathrm{M}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$, $0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.69,146.81,139.50$, $114.07,105.32,82.85,38.98,37.56,29.13,28.13,25.68,18.10,-2.75$, -3.10. Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{OSi}\left(\mathrm{M}^{+}\right): 278.2066$. Found: 278.2051.

Preparation of cis-4-[1', $\mathbf{1}^{\prime}$-Bis(methoxycarbonyl)-3'-butynyl]-2-cyclo-penten-1-ol (11a). Epoxycyclopentene ($0.500 \mathrm{~g}, 6.1 \mathrm{mmol}$) was added slowly at $0^{\circ} \mathrm{C}$ over 2 h to a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.158 \mathrm{~g}, 0.153$ mmol) and dppe ($0.243 \mathrm{~g}, 0.610 \mathrm{mmol}$) in THF (8 mL) containing dimethyl propargylmalonate ${ }^{2 \mathrm{a}}$ ($1.24 \mathrm{~g}, 7.32 \mathrm{mmol}$). After being stirred at $0^{\circ} \mathrm{C}$ for 3 h and room temperature overnight, the mixture was concentrated and flash chromatographed (hexane:ether $=1: 1.5$) to give 11 as an oil ($0.840 \mathrm{~g}, 54.5 \%$). IR (CDCl_{3}): 3560, 3310, 2258, 1726, $1435,1285,1230,1190,1050 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $6.01(\mathrm{~m}, 1 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.49(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.55$ (ddd, $J=14.1,7.9,8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.04(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{bs}, 1 \mathrm{H}), 1.60$ (ddd, $J=14.4$, $5.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.50,170.45,135.53$, $134.29,78.99,76.08,71.75,60.00,52.57,52.44,47.40,35.40,23.26$. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right): 252.0998$. Found: 252.1010.

Preparation of cis-3-[1', 1^{\prime}-Bis(methoxycarbonyl)-3'-butynyl]-5-[(methoxycarbonyl)oxy]cyclopentene (12a). To a solution of alcohol 11a (0.810 $\mathrm{g}, 3.2 \mathrm{mmol}$), DMAP (0.02 g), and pyridine ($1.30 \mathrm{~mL}, 16.0 \mathrm{mmol}$) in dichloromethane (5 mL) was added methyl chloroformate $(1.23 \mathrm{~mL}$, 16.0 mmol) at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 10 min and at room temperature overnight, the mixture was diluted with dichloromethane, washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (hexane:ether $=3: 1$) to give the carbonate 12a ($0.682 \mathrm{~g}, 69 \%$). IR (CDCl_{3}): 3311, 1735, 1440, 1341, 1265, 1230, 1200, $1058,1040 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.19(\mathrm{~m}, 1 \mathrm{H}), 5.88$ $(\mathrm{m}, 1 \mathrm{H}), 5.52(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 2.84$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{dt}, J=14.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{t}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.72$ (ddd, $J=14.7,5.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 170.06,169.86,155.66,137.76,130.52,82.09,78.73,71.84$, $59.81,54.46,52.63,52.15,46.62,31.83,23.03$. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right.$ $-\mathrm{CH}_{3} \mathrm{OH}$): 278.0790. Found: 278.0793.

Preparation of cis-3-[1', $\mathbf{1}^{\prime}$-Bis(methoxycarbonyl)-3'-butenyl]-5-[1', $\mathbf{1}^{\prime}$ -bis(methoxycarbonyl)-3'-butynyl]cyclopentene (10a). To a suspension of sodium hydride $(0.0144 \mathrm{~g}, 0.60 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dimethyl allylmalonate $(0.103 \mathrm{~g}, 0.60 \mathrm{mmol})$. In a separate flask, a solution of carbonate $12 \mathrm{a}(0.200 \mathrm{~g}, 0.650 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0289 \mathrm{~g}, 0.025 \mathrm{mmol})$ and triphenylphosphine$(0.0131 \mathrm{~g}, 0.050 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$, followed by a clear solution of the anion from the first flask. The combined mixture was stirred and heated at reflux for 1.5 h . The mixture was concentrated and flash chromatographed (hexane:ether $=2.5: 1$ to $2: 1$ to $1: 1$) to afford compound $10 \mathrm{a}(0.130 \mathrm{~g}, 53 \%)$. IR (CDCl_{3}): $3311,2259,1730,1638,1435,1290$, $1260,1225,1141 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.85(\mathrm{~m}, 2 \mathrm{H})$, $5.69(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.67$ $(\mathrm{s}, 3 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~m}$, $2 \mathrm{H}), 2.15(\mathrm{dt}, J=12.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{dt}$, $J=12.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.31,170.82$, $170.43,169.98,133.07,132.76,132.30,119.11,78.98,71.39,60.64,59.49$, 52.49, 52.24, 52.05, 51.84, 47.47, 47.24, 37.40, 27.12, 22.76. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{7}\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right):$ 375.1444. Found: 375.1427. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{8}: \mathrm{C}, 62.06 ; \mathrm{H}, 6.45$. Found: $\mathrm{C}, 62.20 ; \mathrm{H}, 6.43$.

Preparation of 5,5,9,9-Tetrakis(methoxycarbonyl)-3,11-bis(methylene)tricyclo[6.3.0.0 ${ }^{2,6}$]undecane (13). Acetic acid ($1.7 \mu \mathrm{~L}, 0.030 \mathrm{mmol}$) followed by substrate $10 a(0.012 \mathrm{~g}, 0.03 \mathrm{mmol})$ was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $\mathrm{CHCl}_{3}(0.00078 \mathrm{~g}, 0.000754 \mathrm{mmol})$ and triphenylphosphine $(0.00079$ $\mathrm{g}, 0.00302 \mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$. The reaction mixture was stirred at $105^{\circ} \mathrm{C}$ for 4 h , cooled, concentrated, and flash chromatographed (hexane:ether $=2: 1$) to give compound $13(0.0070 \mathrm{~g}, 57 \%)$. IR (CDCl_{3}): $1730,1456,1432,1271,1233,1219 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 5.06$ (bs, 2H), 4.89 (bs, 2H), $3.70(\mathrm{~s}, 6 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H})$, $3.24(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{bd}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.58(\mathrm{dt}, J=12.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{dt}, J=12.4,12 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.74,170.19,146.04,112.36,60.98$,
52.78, 52.48, 51.11, 50.23, 39.74, 30.63. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{8}: 406.1628$. Found: 406.1617.

Preparation of cis-4-[(p-Tolylsulfonyl)-1'-aza-1', $\mathbf{3}^{\prime}$-butenyl]-2-cyclo-penten-1-01(11b). A solution of allyl ethyl carbonate ($0.78 \mathrm{~g}, 6.0 \mathrm{mmol}$) in THF (1.0 mL) was added to a room temperature mixture of p-toluenesulfonamide $(1.54 \mathrm{~g}, 9.0 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.110 \mathrm{~g}, 0.12 \mathrm{mmol})$, and triphenylphosphine ($0.253 \mathrm{~g}, 0.96 \mathrm{mmol}$) in THF (5 mL) treated with BSA (O, N-bis(trimethylsilyl)acetamide) $(2.44 \mathrm{~g}, 12.0 \mathrm{mmol})$. The reaction mixture was stirred at room temperature overnight, concentrated, and flash chromatographed (hexane:ether $=4: 1$ to $2: 1$) to give N-allyl-p-toluenesulfonamide ($0.95 \mathrm{~g}, 75 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 3383,3288,2927$, $1673,1648,1599,1333,1162,1095,1064 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~m}$, $1 \mathrm{H}), 5.16(\mathrm{dd}, J=17.2,1.3,1 \mathrm{H}), 5.10(\mathrm{dd}, J=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ $(\mathrm{m}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 143.68,137.09,133.13,129.86,127.27,117.74,45.57,21.26$.

The monoepoxide of cyclopentadiene ($0.489 \mathrm{~g}, 5.96 \mathrm{mmol}$) was added very slowly at $0^{\circ} \mathrm{C}$ to a mixture of N -allyl- p -toluenesulfonamide (0.84 $\mathrm{g}, 3.98 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.0729 \mathrm{~g}, 0.0796 \mathrm{mmol})$, and dppe $(0.1267 \mathrm{~g}$, 0.318 mmol) in THF (4 mL) treated with BSA $(1.21 \mathrm{~g}, 5.96 \mathrm{mmol})$. The mixture was stirred at room temperature for 24 h and concentrated to give a residue, which was dissolved in ether. The ether solution was washed with aqueous hydrochloric acid solution (5\%), saturated aqueous sodium bicarbonate solution, and brine, respectively, dried (MgSO_{4}), filtered, concentrated, and chromatographed (hexane:ether $=1: 3$) to give compound 11 b as an oil ($0.70 \mathrm{~g}, 60 \%$). IR (CDCl_{3}): 3610,1600 , $1336,1159,1092 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 5.60$ $(\mathrm{m}, 1 \mathrm{H}), 5.22$ (dd, $J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (dd, $J=10.2,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 1.90(\mathrm{bs}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $143.56,137.74,137.16,136.14,133.32,129.86,127.40,117.34,74.64$, 62.16, 46.59, 38.23, 21.29. Calcd forC $1_{5} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right): 293.1086$. Found: 293.1069.

Preparation of cis-3-[(\boldsymbol{p}-Tolylsulfonyl-1'-aza- $\mathbf{1}^{\prime}, \mathbf{3}^{\prime}$-butenyl]-5-[(methoxycarbonyl)oxy]cyclopentene (12b). To a mixture of alcohol 11b (0.43 $\mathrm{g}, 1.47 \mathrm{mmol})$, DMAP $(0.01 \mathrm{~g})$, and pyridine $(0.36 \mathrm{~mL}, 4.41 \mathrm{mmol})$ in dichloromethane (2.5 mL) was added methyl chloroformate $(0.34 \mathrm{~mL}$, 4.41 mmol) at $0^{\circ} \mathrm{C}$. After being stirred at room temperature overnight, the mixture was diluted with dichloromethane, washed with water, saturated aqueous CuSO_{4} solution, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (hexane:ether $=1: 2$) to give carbonate $12 \mathrm{~b}\left(0.32 \mathrm{~g}, 62 \%\right.$). IR (CDCl_{3}): $1745,1599,1444,1341$, 1271, 1161, $1092 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.76$ $(\mathrm{m}, 1 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=17.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=$ $10.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{dd}, J=16.6,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=16.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dt}, J=15.1,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{dt}, J=15.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 155.37,143.68,137.46,136.58,135.91,132.74,129.95,127.37$, $117.46,80.34,61.56,54.65,45.62,34.28,21.29$. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{3^{-}}$ ($\mathrm{M}^{+}-\mathrm{Ts}$): 196.0974. Found: 196.0982.

Preparation of cis-3-[(p-Tolylsulfonyl)-1'-aza-1', $\mathbf{3}^{\prime}$-butenyl]-5-[1', $\mathbf{1}^{\prime}$ -bis(methoxycarbonyl)-3'-butynyl]cyclopentene (10b). To a suspension of sodium hydride (pentane-washed) $(60 \%, 0.0776 \mathrm{~g}, 1.94 \mathrm{mmol})$ in THF (1 mL) was added dimethyl propargylmalonate ($0.330 \mathrm{~g}, 1.94 \mathrm{mmol}$). The mixture was stirred at room temperature for 20 min .

A solution of carbonate $\mathbf{1 2 b}(0.278 \mathrm{~g}, 0.79 \mathrm{mmol})$ in THF (1.5 mL) followed by a clear solution of the anion from the first flask was added to a separate flask charged with $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(0.00565 \mathrm{~g}, 0.0485 \mathrm{mmol})$ and triphenylphosphine ($0.00254 \mathrm{~g}, 0.097 \mathrm{mmol}$) in 0.5 mL of THF at room temperature. The reaction mixture was heated at reflux for 1 h , cooled, concentrated, and flash chromatographed (hexane:ether $=4: 3$) to give compound 10 b as an oil $(0.320 \mathrm{~g}, 91 \%)$. IR (CDCl_{3}): 3305,2250 , $1732,1599,1439,1340 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H})$, $5.35(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=17.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=10.2,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.44$ (m, 1H), 2.80 (dd, $J=17.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dd, $J=17.3,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{dt}, J=13.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{t}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.44(\mathrm{dt}, J=13.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.11,169.87,143.38,138.09,136.09,135.48,131.60,128.77,127.44$, 117.06, 78.66, 71.68, 63.20, 59.30, 52.49, 52.26, 46.28, 45.76, 30.66, 22.96, 21.17. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}\left(\mathrm{M}^{+}-1\right)$: 290.1393. Found: 290.1396.

Preparation of 9,9-Bis(methoxycarbonyl)-3,11-bis(methylene)-5-(p-tolylsulfonyl)-5-azatricycio[6.3.0.0 ${ }^{2,6}$]undecane (16). Aceticacid ($1.6 \mu \mathrm{~L}$, 0.0278 mmol) followed by substrate $10 \mathrm{~b}(0.062 \mathrm{~g}, 0.139 \mathrm{mmol})$ was added at room temperature to a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.0036 \mathrm{~g}$, 0.0035 mmol) and triphenylphosphine ($0.00364 \mathrm{~g}, 0.0139 \mathrm{mmol}$) in benzene (3 mL). The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 14 h , cooled, concentrated, and flash chromatographed (hexane:ether $=2: 1$ to 1:2) to give $16(0.025 \mathrm{~g}, 40 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 1733,1436,1347,1163$, $1094 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 5.00 (bs, 1H), 4.94 (bs, 1H), 4.90 (bs, 1H), 4.86 (bs, 1H), 3.94 (bd, J $=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{bd}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{bd}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 2 \mathrm{H})$, 2.66 (bd, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (s, 3H), 2.00 (ddd, $J=15.0,9.8,7.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.92 (ddd, $J=15.0,8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 171.89,170.07,146.46,143.61,143.52,133.62,129.63,127.81$, $111.72,108.99,66.71,62.31,54.69,54.57,52.78,52.57,50.85,50.42$, 40.01, 34.82, 21.53. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{~S}$: 445.1560. Found: 445.1556.

Preparation of 1-Allyl-1-(methoxycarbonyl)-2-methylenecyclopentane (18, $n=1, X=\mathbf{C H}_{2}$). To a slurry of sodium hydride (pentane-washed) ($2.0 \mathrm{~g}, 83 \mathrm{mmol}$) in THF (120 mL) was added methyl 2 -oxocyclopentanecarboxylate ($11.24 \mathrm{~g}, 79.0 \mathrm{mmol}$) at a rate to maintain a controlled evolution of hydrogen at $0^{\circ} \mathrm{C}$. When gas evolution was complete, allyl bromide ($8.21 \mathrm{~mL}, 94.9 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. Having been stirred at room temperature overnight, the mixture was quenched with water, extracted with ether, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give the 2-allyl-2-(methoxycarbonyl)cyclopentanone ($12.95 \mathrm{~g}, 90 \%$).

Diiodomethane ($5.40 \mathrm{~mL}, 67.48 \mathrm{mmol}$) was added at $25^{\circ} \mathrm{C}$ to a stirred suspension of zinc (activated by washing with 5% aqueous HCl) in THF (150 mL) under nitrogen. ${ }^{30}$ After 45 min , a solution of titanium(IV) chloride in dichloromethane ($13.50 \mathrm{~mL}, 13.50 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and the resulting dark brown mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min . A solution of 2-allyl-2-(methoxycarbonyl)cyclopentanone ($2.46 \mathrm{~g}, 13.50$ mmol) in THF (5 mL) was added dropwise at $25^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1.5 h , then filtered through celite. The filtrate was washed with $1 \mathbf{N ~ H C l}$, water, saturated aqueous sodium bicarbonate, and brine, dried (MgSO_{4}), filtered, concentrated, and flash chromatographed (5% ether/hexane) to give the title product (0.41 g , 17\%). IR (CDCl_{3}): 2259, 1719, 1640, 1433, 1231, $1211,1159 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, $2.68(\mathrm{dd}, J=13.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.54,154.63$, $134.78,117.76,107.65,55.88,52.06,42.92,34.68,33.88,23.92$. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 180.1150$. Found: 180.1142 .

Preparation of 1-Allyl-1-[1'-(tert-butyldimethylsiloxy)-3'-butynyl]-2methylenecyclopentane (17b). A solution of LAH in THF (3.05 mL , 3.05 mmol) was added at $0^{\circ} \mathrm{C}$ to the above ester ($0.55 \mathrm{~g}, 3.05 \mathrm{mmol}$) dissolved in THF (10 mL). After being stirred at $0^{\circ} \mathrm{C}$ for 30 min , the mixture was quenched with water (3 mL) and 2 N sodium hydroxide (4 mL) and filtered. The filtrate was diluted with ether. The layers were separated. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give crude alcohol $19(n=1)$, which was directly used in the next reaction. The spectral analysis was based on a sample purified by flash chromatography. IR $\left(\mathrm{CDCl}_{3}\right): 3620,3562$, $3075,2960,2879,1638,1433,1039 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.77(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 3 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=11.0,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35$ (dd, $J=11.0,5.6 \mathrm{~Hz} 1 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 1.62$ (m, 5H). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.75,135.46,117.45,106.08$, 67.86, 50.29, 40.94, 34.24, 33.69, 22.58. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}: 152.1201$. Found: 152.1196.

The above alcohol in dichloromethane (2 mL) was added to a solution of oxalyl chloride ($0.31 \mathrm{~mL}, 3.4 \mathrm{mmol}$) in dichloromethane (8 mL) at -50 to $-60^{\circ} \mathrm{C}$ to which DMSO ($0.52 \mathrm{~mL}, 0.73 \mathrm{mmol}$) was added. ${ }^{31}$ After 15 min , triethylamine ($1.07 \mathrm{~mL}, 15.3 \mathrm{mmol}$) was added. The reaction mixture was stirred for 5 min at -50 to $-60^{\circ} \mathrm{C}$ and then allowed to warm to room temperature. Water was added. The mixture was extracted with dichloromethane. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give crude aldehyde $20(n=1)$. The spectral analysis was based on a purified sample. IR $\left(\mathrm{CDCl}_{3}\right): 3078$, $2961,2720,1716,1640,1430,995 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 2 \mathrm{H})$,

[^10]$4.88(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H})$, $2.31(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 200.91,152.07,133.95,110.29,109.79,60.73$, 39.22, 33.94, 31.22, 23.49. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 150.1045. Found: 150.1038.

A mixture of propargyl bromide ($0.49 \mathrm{~mL}, 5.39 \mathrm{mmol}$) and the above aldehyde in THF (3 mL) was added dropwise to zinc ($0.286 \mathrm{~g}, 4.38$ mmol) with ice-bath cooling. ${ }^{32}$ After being stirred at room temperature for 1 h , the mixture was poured into water, acidified by 20% aqueous acetic acid solution, and then extracted with ether. The organic layer was washed with saturated sodium bicarbonate and brine, dried ($\mathbf{M g S O}_{4}$), filtered, and concentrated to give a crude alcohol.

To a solution of the above alcohol and 2,6 -lutidine $(0.69 \mathrm{~mL}, 6.10$ mmol) in dichloromethane was added TBDMSOTf ($1.05 \mathrm{~mL}, 4.67 \mathrm{mmol}$) slowly at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 30 min and then diluted with dichloromethane. The organic layer was washed with water, saturated aqueous sodium bicarbonate, and brine, dried (MgSO_{4}), filtered, concentrated, and flash chromatographed (hexane) to give the title compound ($0.20 \mathrm{~g}, 21.6 \%$ overall four steps). IR $\left(\mathrm{CDCl}_{3}\right): 3310,3073,2955,2930,2882,2858,2112,1646,1637,1460$, 1251, 1085, $835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.75(\mathrm{~m}, 1 \mathrm{H})$, $4.97-5.09(\mathrm{~m}, 3 \mathrm{H}), 4.85(\mathrm{~m}, 0.3 \mathrm{H}), 4.70(\mathrm{~m}, 0.7 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H})$, 2.47-2.57(m, 1H), 2.13-2.40(m,5H), 1.90-2.00(m, 2H), 1.47-1.58 (m, 3H), 0.93 (s, 6.3H), 0.89 (s, 2.7H), $0.20(\mathrm{~s}, 2.1 \mathrm{H}), 0.14(\mathrm{~s}, 0.9 \mathrm{H})$, $0.12(\mathrm{~s}, 2.1 \mathrm{H}), 0.06(\mathrm{~s}, 0.9 \mathrm{H}) .{ }^{13} \mathrm{H}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.77$, 156.23, 135.99, $117.20,117.02,106.97,106.52,84.01,83.59,78.25,77.17$, $70.20,69.99,53.93,53.82,43.48,41.79,35.76,35.50,32.33,31.55,25.96$, $25.89,23.89,23.25,23.09,18.15,18.08,-3.58,-4.34,-4.78,-4.95$. Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$: 289.1988 . Found: 289.2001 .

Preparation of 2-(tert-Butyldimethylsiloxy)-4,7-bis(methylene)tricyclo[3.3.3.0 ${ }^{1,5}$]undecane (21). Acetic acid ($2.1 \mu \mathrm{~L}, 0.0325 \mathrm{mmol}$) followed by substrate $17 \mathrm{~b}(0.022 \mathrm{~g}, 0.075 \mathrm{mmol})$ was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ ($0.00195 \mathrm{~g}, 0.00019 \mathrm{mmol}$) and triphenylphosphine ($0.00197 \mathrm{~g}, 0.0075$ mmol) in 2.0 mL of benzene. The reaction mixture was stirred at $55^{\circ} \mathrm{C}$ under nitrogen for 1.5 h , cooled, concentrated, and chromatographed (hexane) to afford propellane 21 ($0.017 \mathrm{~g}, 77 \%$). IR (CDCl_{3}): 1659, $1465,1260,1140,840 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.66-4.82$ (m, 4H), $3.67(\mathrm{~m}, 1 \mathrm{H}), 1.50-2.46(\mathrm{~m}, 2 \mathrm{H}), 0.88,0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04,0.03$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.90,156.51,152.74,152.08$, 105.64, 105.46, 104.65, 104.31, 77.56, 77.21, 63.92, 63.53, 62.71, 62.28, $48.66,46.50,46.37,42.86,42.24,42.10,40.82,39.57,39.05,34.21,26.20$, $25.78,25.47,18.04,-4.48,-4.84$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{OSi}\left(\mathrm{M}^{+}-{ }^{1} \mathrm{C}_{4} \mathrm{H}_{9}\right)$: 247.1518. Found: 247.1530.

Preparation of 1-Allyl-1-(1'-acetoxy-3'-butynyl)-2-methylenecyclohexane (17d). To a slurry of sodium hydride ($60 \%, 3.36 \mathrm{~g}, 84 \mathrm{mmol}$) (washed with pentane) in THF (180 mL) was added ethyl 2-oxocyclohexanecarboxylate ($13.6 \mathrm{~g}, 80 \mathrm{mmol}$) at a rate to maintain a controlled evolution of hydrogen at $0^{\circ} \mathrm{C}$. When gas evolution was complete, allyl bromide ($8.3 \mathrm{~mL}, 96.0 \mathrm{mmol}$) was added. After being stirred at room temperature overnight, the mixture was quenched with water, extracted with ether, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give 2-allyl-2-(ethoxycarbonyl)cyclohexanone ($16.4 \mathrm{~g}, 97.6 \%$).

A solution of methyltriphenylphosphonium iodide ($8.08 \mathrm{~g}, 20 \mathrm{mmol}$) in DMSO (15 mL) was added to an ice cold solution of dimsyl sodium prepared by heating sodium hydride ($60 \%, 0.8 \mathrm{~g}, 20 \mathrm{mmol}$) (washed with pentane) in dry DMSO (20 mL) at $75-80{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{33}$ The above compound ($4.2 \mathrm{~g}, 20 \mathrm{mmol}$) was added to the resulting dark red solution of the ylide at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 24 h , the mixture was quenched with water, extracted with ether, washed with water ($2 \times$) and brine, dried (MgSO_{4}), filtered, concentrated, and flash chromatographed (hexane:ether $=8: 1)$ to give $18\left(n=2, \mathrm{X}=\mathrm{CH}_{2}\right)(2.5$ $\mathrm{g}, 60.6 \%$). IR (CDCl_{3}): 1719, 1641, 1445, $1210 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H})$, $4.14(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.03$ (td, $J=12.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~m}, 1 \mathrm{H})$, $1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 174.70,150.32,134.16,117.84,108.54,60.37,52.56,41.08,34.96$, 34.86, 27.92, 22.77, 14.02. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 208.1463 . Found: 208.1480

To a solution of the above compound ($2.13 \mathrm{~g}, 10.3 \mathrm{mmol}$) in THF (20 mL) was added a solution of LAH in THF ($10.3 \mathrm{~mL}, 10.3 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Water (9 mL)

[^11]followed by sodium hydroxide ($2 \mathrm{~N}, 12 \mathrm{~mL}$) was added. The mixture was stirred for 10 min and then filtered through Celite. The cake was washed with ether. The filtrate was diluted with ether. The layers were separated. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give crude alcohol $19(n=2)(1.72 \mathrm{~g})$ IR $\left(\mathrm{CDCl}_{3}\right): 3622,3566,1634,1448,1033,992 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{bs}, 1 \mathrm{H}), 4.71(\mathrm{bs}, 1 \mathrm{H}), 3.65$ (dd, $J=11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=11.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (dd, $J=14.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{dd}, J=7.1$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.13,135.12,117.31$, $109.29,66.28,44.19,38.61,33.45,33.27,27.56,21.58$. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16}$ ($\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}$): 148.1252. Found: 148.1235.

A solution of the above alcohol ($1.66 \mathrm{~g}, 10 \mathrm{mmol}$) in dichloromethane (10 mL) was added to a solution of oxalyl chloride ($1.0 \mathrm{~mL}, 11 \mathrm{mmol}$) in dichloromethane $(25 \mathrm{~mL})$ at -50 to $-60^{\circ} \mathrm{C}$ to which DMSO (1.7 mL , 22 mmol) was added. After 15 min , triethylamine ($7.0 \mathrm{~mL}, 50 \mathrm{mmol}$) was added. The mixture was stirred for 5 min and then allowed to warm to room temperature. Workup as for $20(n=1)$ gave aldehyde $20(n=$ 2) ($1.2 \mathrm{~g}, 74 \%$ overall two steps). IR $\left(\mathrm{CDCl}_{3}\right): 2728,2710,1719,1638$, $1446 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H})$, $5.00(\mathrm{~m}, 3 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (dd, $J=14.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 3 \mathrm{H}), 1.50$ $(\mathrm{m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.99,147.43$, $133.45,118.17,111.07,55.50,37.25,34.03,30.86,27.02,21.69$. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 164.1202 . Found: 164.1201 .

A mixture of propargyl bromide ($0.94 \mathrm{~mL}, 10.0 \mathrm{mmol}$) and aldehyde $20(n=2)(1.06 \mathrm{~g}, 6.46 \mathrm{mmol})$ in THF (6 mL) was added dropwise to zinc (activated by washing with 5% hydrochloric acid) ($0.55 \mathrm{~g}, 8.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 1 h , workup as before for 17 a gave an alcohol 17c with a diastereoisomeric ratio of 1.8:1.

Acetic anhydride ($3.05 \mathrm{~mL}, 32.3 \mathrm{mmol}$) was added dropwise to a solution of the above alcohol in pyridine (15 mL) at $0^{\circ} \mathrm{C}$. After being stirred at room temperature overnight, the mixture was diluted with ether, washed with water, saturated aqueous CuSO_{4} solution, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (5% ether in hexane) to give 17d ($0.75 \mathrm{~g}, 47 \%$ overall two steps). IR (CDCl_{3}): $3316,1731,1632,1450,1371,1239 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=9.0,4.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 5.50(\mathrm{dd}, J=9.1,3.4$ $\mathrm{Hz}, 0.3 \mathrm{H}), 4.92-5.09(\mathrm{~m}, 3 \mathrm{H}), 4.78(\mathrm{~s}, 0.7 \mathrm{H}), 4.64(\mathrm{~s}, 0.3 \mathrm{H}), 2.40(\mathrm{~m}$, $4 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 2.1 \mathrm{H}), 2.06(\mathrm{~s}, 0.9 \mathrm{H}), 1.96(\mathrm{t}, J=2.7 \mathrm{~Hz}$, $0.3 \mathrm{H}), 1.93(\mathrm{t}, J=2.7 \mathrm{~Hz}, 0.7 \mathrm{H}), 1.27-1.80(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.67,149.60,148.85,135.27,134.85,117.32,117.05$, $111.50,111.22,81.09,80.96,73.20,71.72,69.76,69.68,45.98,45.94$, 37.16, 36.42, 33.67,33.26, 32.11, 32.00, 27.30, 26.85, 21.41, 21.06, 20.66, $20.58,19.83,19.62$. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18}\left(\mathrm{M}^{+}-\mathrm{HOAc}\right): 186.1409$. Found: 186.1421.

Preparation of 7-Acetoxy-9,11-bis(methylene)tricyclo[4.3.3.01.6 d dodecane (22). Acetic acid ($3.4 \mu \mathrm{~L}, 0.06 \mathrm{mmol}$) followed by substrate $17 \mathrm{~d}(0.0738$ $\mathrm{g}, 0.3 \mathrm{mmol}$) was added at room temperature to a mixture of $\mathrm{Pd}_{2^{-}}$ $(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.0078 \mathrm{~g}, 0.0075 \mathrm{mmol})$ and triphenylphosphine $(0.00786$ $\mathrm{g}, 0.030 \mathrm{mmol}$) in benzene (5.0 mL). After stirring at $50^{\circ} \mathrm{C}$ for 3 h , the mixture was cooled, concentrated, and flash chromatographed (5\% ether in hexane) to give propellane $22(0.056 \mathrm{~g}, 76 \%)$. IR (CDCl_{3}): $3076,2936,2860,1725,1652,1250 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.21(\mathrm{dd}, J=8.3,6.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 5.01(\mathrm{t}, J=6.7 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.88(\mathrm{~m}$, $4 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 0.9 \mathrm{H}), 2.03(\mathrm{~s}, 2.1 \mathrm{H}), 1.23-2.58(\mathrm{~m}, 16 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.47,156.44,153.21,150.89,149.83$, 108.23, 106.61, 106.22, 105.62, 79.05, 76.05, 54.18, 53.98, 53.27, 53.19, $47.50,42.45,40.67,40.05,36.33,36.04,32.49,30.95,28.95,25.75,21.72$, 21.27, 21.14, 20.79. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18}$ ($\mathrm{M}^{+}-\mathrm{HOAc}$): 186.1429. Found: 186.1392.

Preparation of 9-Methyl-11-methylenetricyclo[4.3.3.0 ${ }^{1,6}$ ddodec-8-en-7-one (23). An excess of solid potassium carbonate was added to a solution of acetate $22(0.050 \mathrm{~g}, 0.2 \mathrm{mmol})$ in methanol (2 mL). After being stirred at room temperature for 3 h , the mixture was filtered through cotton and the filtrate concentrated. The residue was dissolved in dichloromethane (2 mL) and some magnesium sulfate added. To the resultant suspension was added $\operatorname{PCC}(0.131 \mathrm{~g}, 0.6 \mathrm{mmol})$ in small portions. The mixture was stirred at room temperature for 2 h and filtered through a silica gel plug, and the filtrate was concentrated. The residue was dissolved in chloroform (1 mL) and one drop of DBU added. The reaction mixture was stirred at room temperature for 3 h , concentrated, and flash chromatographed (hexane:ether $=2.5: 1$ to $1: 1$) to give enone 23 (0.016 $\mathrm{g}, 36.6 \%$ overall three steps $)$. IR $\left(\mathrm{CDCl}_{3}\right): 2941,2860,1689,1619 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.90$ (bs, 1H), 4.73 (bs, 2H), 2.46 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{bs}, 2 \mathrm{H}), 2.24(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}$,
$J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~m}$, 2H), $1.26(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 213.29,181.94$, $147.93,130.05,107.73,57.34,56.68,43.28,42.41,29.65,28.86,18.36$, 18.04, 14.53. Caled for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right): 202.1358$. Found: 202.1360.

Preparation of 2-Methylene-5-hexen-1-01 (25a). Methallyl alcohol $(33.66 \mathrm{~mL}, 400.0 \mathrm{mmol})$ was added to $-78^{\circ} \mathrm{C}$ stirred solution of TMEDA ($120.7 \mathrm{~mL}, 800 \mathrm{mmol}$) and n-butyllithium ($80.0 \mathrm{~mL}, 800.0 \mathrm{mmol}$) in dry ether (600 mL) mixed at $0^{\circ} \mathrm{C}$. The mixture was stirred and allowed to warm slowly to room temperature over 24 h . The resulting yellow suspension was cooled to $-78^{\circ} \mathrm{C}$, and allyl bromide ($25.4 \mathrm{~mL}, 300.0$ mmol) in ether (50 mL) was added dropwise. After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h , the cooling bath was removed. After being stirred for an additional 5 h , the mixture was quenched with saturated aqueous ammonium chloride solution. The aqueous layer was extracted with ether ($3 \times 50 \mathrm{~mL}$). The combined ether layers were washed with water (200 mL), saturated aqueous CuSO_{4} solution ($3 \times 150 \mathrm{~mL}$), and brine (150 mL), respectively, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and distilled at $95-100^{\circ} \mathrm{C} / 20-25 \mathrm{mmHg}$ to give alcohol 25 a as a colorless liquid ($26.1 \mathrm{~g}, 78 \%$). IR (CDCl_{3}): $3611,3081,2980,1641,1216,1050$, $1017 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.03$ (dd, $J=17.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{bs}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (bs, 1H). ${ }^{13} \mathrm{CNMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.48,138.29,114.87,109.67$, $65.69,31.95,31.66$. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}\left(\mathrm{M}^{+}-1\right): 111.0810$. Found: 111.0814.

Preparation of 7,7-Bis(methoxycarbonyl)-5-methylene-1-decen-9-yne (26). To a solution of crude alcohol 25 a (3.73 g , maximum 33.3 mmol) (prepared from 48.9 mmol of methallyl alcohol), DMAP (0.02 g), and pyridine ($13.50 \mathrm{~mL}, 166.5 \mathrm{mmol}$) in dichloromethane (40 mL) was added methyl chloroformate ($12.90 \mathrm{~mL}, 166.5 \mathrm{mmol}$) slowly at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 10 min and room temperature for 2 h , the mixture was diluted with dichloromethane, washed with water, saturated aqueous CuSO_{4} solution, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was distilled (Kugelrohr, $110-120^{\circ} \mathrm{C}$ at 4-5 $\mathbf{m m H g}$) to give carbonate $\mathbf{2 5 b}$ as a colorless liquid ($2.60 \mathrm{~g}, 50 \%$ overall two steps). IR (CDCl_{3}): $1750,1655,1640,1446,1340,1270 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 4.94-5.10(\mathrm{~m}, 4 \mathrm{H}), 4.58(\mathrm{~s}$, $2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.93$, $142.89,137.93,115.15,113.40,70.25,54.70,32.05,31.41$.

A solution of carbonate $25 \mathrm{~b}(0.312 \mathrm{~g}, 1.84 \mathrm{mmol})$ and dimethyl propargylmalonate $(0.408 \mathrm{~g}, 2.4 \mathrm{mmol})$ in THF (1 mL) was added to a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.05175 \mathrm{~g}, 0.05 \mathrm{mmol})$ and triphenylphosphine $(0.105 \mathrm{~g}, 0.40 \mathrm{mmol})$ in dry THF (1 mL). The mixture was stirred at $40^{\circ} \mathrm{C}$ overnight, concentrated, and flash chromatographed (hexane: ether $=6: 1$) to afford compound 26 as a colorless oil ($0.400 \mathrm{~g}, 83 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 3315,3080,2960,1739,1640,1440,1295,1210 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.77$ (ddt, $J=17.0,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.95 (m, 4H), $3.74(\mathrm{~s}, 6 \mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~m}$, $2 \mathrm{H}), 2.04(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 170.80,143.38,138.14,115.50114 .88,79.09,71.73,56.54$, $52.63,37.22,35.57,31.88,22.41$. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right)$: 233.1178. Found: 233.1181.

Preparation of 3,3-Bis(methoxycarbonyl)-1,7-bis(methylene)spiro[4.4] nonane (29). A solution of malonate $26(0.132 \mathrm{~g}, 0.50 \mathrm{mmol})$ in benzene (1 mL) followed by acetic acid ($2.9 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$) was added to Pd_{2} $(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.01294 \mathrm{~g}, 0.0125 \mathrm{mmol})$ and tri-o-tolylphosphine $(0.03044 \mathrm{~g}, 0.100 \mathrm{mmol})$ in 1 mL of benzene. The reaction mixture was stirred at room temperature overnight, concentrated, and flash chromatographed (hexane:ether $=10: 1$) to give spirane 29 as a colorless oil ($0.112 \mathrm{~g}, 85 \%$). IR $\left(\mathrm{CDCl}_{3}\right) 1730,1650,1440,1260,1176 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.86(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.10(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 238(\mathrm{~m}, 6 \mathrm{H}), 1.70$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.41,172.35,155.20$, $151.08,106.06,105.11,57.67,52.75,52.27,47.05,46.05,41.32,39.63$, 31.09. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$: 264.1362. Found: 264.1350. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$: $\mathrm{C}, 68.16 ; \mathrm{H}, 7.63$, Found: $\mathrm{C}, 68.27, \mathrm{H}, 7.75$.

Preparation 7,7-Bis(phenylsulfonyl)-5-methylene-1-decen-9-yne (27). A solution of 4,4-bis(benzenesulfonyl)-1-butyne ($0.390 \mathrm{~g}, 1.17 \mathrm{mmol}$) and carbonate $\mathbf{2 5 b}(0.217 \mathrm{~g}, 1.27 \mathrm{mmol})$ in THF (1.5 mL) was added to a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.0234 \mathrm{~g}, 0.023 \mathrm{mmol})$ and triphenylphosphine $(0.0474 \mathrm{~g}, 0.18 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at $55^{\circ} \mathrm{C}$ overnight, cooled, concentrated, and flash chromatographed (hexane:ether $=1.5: 1$) to give bis-sulfone 27 $(0.31 \mathrm{~g}, 62 \%)$. IR (CDCl_{3}): 3309, 3074, 2926, 2258, 1637, 1582, 1448 , $1332,1310,1145,1085 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05$ (dd, $J=7.3,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~m}, 4 \mathrm{H}), 5.8(\mathrm{ddt}, J=17.0$, $10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J$
$=17.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=10.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{t}, J=2.8 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.47,138.24,135.00,131.93$, $128.69,117.95,114.90,90.67,75.13,36.22,34.97,32.23,21.98$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}$: $\mathrm{C}, 64.46, \mathrm{H}, 5.64$. Found: $\mathrm{C}, 64.26, \mathrm{H}, 5.26$.

Preparation of 3,3-Bis(phenylsulfonyl)-1,7-bis(methylene)spiro[4.4] nonane (30). To a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.00224 \mathrm{~g}, 0.0022$ mmol), tri-o-tolylphosphine ($0.0026 \mathrm{~g}, 0.0086 \mathrm{mmol}$), and bis-sulfone 27 $(0.037 \mathrm{~g}, 0.086 \mathrm{mmol})$ in a NMR tube was added benzene- $d_{6}(0.8 \mathrm{~mL})$ followed by acetic acid ($4.95 \mu \mathrm{~L}, 0.086 \mathrm{mmol}$). The reaction was monitored by NMR spectroscopy. After standing for 16 h , the mixture was concentrated and flash chromatographed (hexane:ether $=2: 1$) to give compound $30(0.033 \mathrm{~g}, 89 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 1658,1583,1450,1429$, $1325,1310,1145,1075 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~m}$, $4 \mathrm{H}), 7.71(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~m}, 4 \mathrm{H}), 4.89(\mathrm{bs}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dt}, J=$ $17.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dt}, J=17.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 2 \mathrm{H}), 2.23-$ $2.44(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.58$, $150.44,137.13,136.89,134.72,131.55,131.52,128.89,106.82,105.64$, $91.25,53.03,46.51,42.79,39.61,39.33,30.73$. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}$ $\left(\mathrm{M}^{+}-\mathrm{PhSO}_{2}\right)$: 287.1107 . Found: 287.1079.

Preparation of $2-[(\boldsymbol{p}$-Toluenesulfonamido)methyl $]$-1,5-hexadiene. Carbonate $25 \mathrm{~b}(0.364 \mathrm{~g}, 2.00 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ to a mixture of p-toluenesulfonamide $(0.514 \mathrm{~g}, 3.00 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($0.0458 \mathrm{~g}, 0.0500 \mathrm{mmol}$), and triphenylphosphine $(0.105 \mathrm{~g}, 0.400 \mathrm{mmol})$ in THF (2 mL) which was treated with BSA ($0.814 \mathrm{~g}, 4.00 \mathrm{mmol}$). After being stirred at $0^{\circ} \mathrm{C}$ for 30 min and room temperature for 3 h , the mixture was concentrated and flashed chromatographed (hexane:ether $=4: 1$ to $1: 1$) to give the title compound $(0.42 \mathrm{~g}, 79 \%)$. IR (CDCl_{3}): 3382, 3283, 3080, 2981, 2930, 2859, 2258, 1636, 1596, 1490, 1436, 1402 , $1350,1156,1090,1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{ddt}, J=17.0,10.3$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{CNMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.03,143.64,137.89,137.12,129.84,127.28$, $115.06,112.57,47.76,32.59,31.34,21.25$. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right.$ $-\mathrm{CH}_{3}$): 250.0902. Found: 250.0913.

Preparation of Methylene-7-(p-tolylsulfonyl)-7-aza-5,1-decen-9-yne (28a). After allowing a suspension of $\mathrm{NaH}(0.0543 \mathrm{~g}, 1.36 \mathrm{mmol})$ in THF (1 mL) and a solution of the above amide $(0.300 \mathrm{~g}, 1.13 \mathrm{mmol})$ in THF (2 mL) to stir at room temperature for 30 min (the anion was not very soluble), propargyl bromide ($0.40 \mathrm{~mL}, 4.52 \mathrm{mmol}$) was added. After heating at $65^{\circ} \mathrm{C}$ for 4 h , the mixture was quenched with saturated aqueous ammonium chloride solution, concentrated, extracted with dichloromethane, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (hexane:ether $=4: 1$) to give 28a (0.23 g , 67%). IR (CDCl_{3}): 3308, 3075, 2980, 2920, 2254, 1645, 1638, 1598 , $1346,1329,1309,1159,1081 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{ddt}, J=17.0$, $10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.09(\mathrm{~m}, 4 \mathrm{H}), 4.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ $(\mathrm{s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.74,142.50,138.10,136.18$, $129.59,128.00,115.25,115.07,76.30,73.76,51.00,35.31,32.02,21.30$. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}:$ 303.1294. Found: 303.1303. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 67.30, \mathrm{H}, 6.98, \mathrm{~N}, 4.62$. Found: C, 67.39; H, 7.17; N, 4.44.

Preparation of 1,7-Bis(methylene)-3-(p-tolylsulfonyl)-3-azaspiro[4.4] nonane (31). Acetic acid ($2.2 \mu \mathrm{~L}, 0.038 \mathrm{mmol}$) followed by amide 28a ($0.0115 \mathrm{~g}, 0.038 \mathrm{mmol}$) was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.001 \mathrm{~g}, 0.00097$ mmol) and tri-o-tolylphosphine ($0.00345 \mathrm{~g}, 0.013 \mathrm{mmol}$) in 1.0 mL of benzene. The reaction mixture was stirred at room temperature for 10 h , concentrated, and chromatographed (hexane:ether $=4: 1$) to afford spirane 31 ($0.0102 \mathrm{~g}, 88.7 \%$). IR (CDCl_{3}): 3080, 2952, 2851, 1665, $1600,1348,1165,1098 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~m}, 4 \mathrm{H}), 3.91(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{bs}$, $2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.68,149.65$, $143.61,132.62,129.65,127.80,107.04,104.92,58.64,52.72,52.39,44.01$, 36.76, 30.87, 21.53. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$: 303.1294 . Found: 303.1291.

Preparation of 11-Methoxy-7-(p-tolylsutfonyl)-7-aza-1-undecen-9-yne (28b). To a solution of 1,4-butynediol ($176 \mathrm{~g}, 2.05 \mathrm{mmol}$) in THF (550 mL) was added dihydropyran ($33.67 \mathrm{~mL}, 0.37 \mathrm{mmol}$), followed by PPTS ($1 \mathrm{~g}, 0.00398 \mathrm{mmol}$). Having been stirred at room temperature for 3 days, the mixture was diluted with ether, washed with water ($4 \times$) and
brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give a mixture of mono- and diprotected products with a ratio of about $6: 1(46.7 \mathrm{~g})$.

To a suspension of sodium hydride ($60 \%, 12.8 \mathrm{~g}, 0.32 \mathrm{mmol}$) (washed with pentane) in THF (300 mL) was added slowly a solution of the above alcohol ($46 \mathrm{~g}, 0.27 \mathrm{mmol}$) in THF (150 mL). The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. Methyl iodide ($33.6 \mathrm{~mL}, 0.54 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 2 h . Water was added carefully. The mixture was extracted with ether. The organic phase was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give a residue, which was fractionally distilled (75$78^{\circ} \mathrm{C} / 0.07-0.1 \mathrm{mmHg}$) to give $1-$ methoxy-4-(tetrahydropyranyloxy)-2-butyne ($32 \mathrm{~g}, 47 \%$ overall two steps).

A solution of the above compound ($15 \mathrm{~g}, 0.0815 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{~mL})$ was added dropwise to a solution of triphenylphosphine bromine complex prepared from triphenylphosphine ($22.42 \mathrm{~g}, 0.0856$ $\mathrm{mmol})$ and bromine $(4.28 \mathrm{~mL}, 0.08313 \mathrm{mmol})$ at $0^{\circ} \mathrm{Cin}$ dichloromethane $(150 \mathrm{~mL}) .{ }^{34}$ After being stirred at $0^{\circ} \mathrm{C}$ for 1.5 h , the mixture was poured into water, extracted with hexane, washed with saturated aqueous sodium bicarbonate solution and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give a residue, which was filtered through a silica gel plug, eluting with hexane. The filtrate was concentrated and distilled $\left(80-90^{\circ} \mathrm{C} / 50-60\right.$ mmHg) to give 1-bromo-4-methoxy-2-butyne $(9.5 \mathrm{~g}, 71.5 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 1450,1377,1359,1211,1189,11411096 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.15(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 82.71,81.43,59.77,57.62$, 13.87.

To a suspension of sodium hydride $(60 \%, 0.134 \mathrm{~g}, 3.35 \mathrm{mmol})$ in THF (2 mL) was added a solution of 2 -(p-toluenesulfonamidomethyl)-1,5hexadiene ($0.74 \mathrm{~g}, 3.35 \mathrm{mmol}$) in THF (3 mL) dropwise at room temperature. After 30 min , a solution of 1 -bromo- 4 -methoxy-2-butyne ($0.683 \mathrm{~g}, 4.19 \mathrm{mmol}$) in THF (1 mL) was added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h , quenched with saturated aqueous ammonium chloride solution, and extracted with dichloromethane. The combined layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (hexane:ether $=2.5: 1$) to give compound 28b ($0.794 \mathrm{~g}, 82 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 1638,1596,1345,1158,1090 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 4.97-5.08(\mathrm{~m}, 4 \mathrm{H}), 4.08(\mathrm{t}, J=1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.79(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, $2.25(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.60$, $142.81,138.12,136.60,129.57,128.05,115.05,81.59,79.15,59.47,57.21$, $51.33,35.74,32.18,31.38,30.78,21.21$. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$: 347.1557. Found: 347.1530.

Preparation of 1-(Methoxyethylidene)-7-methylene-3-(p-tolylsulfonyl)-3-azaspiro[4.4]nonane (32). A solution of amide 28 b ($0.043 \mathrm{~g}, 0.124$ $\mathrm{mmol})$ in benzene- $d_{6}(0.8 \mathrm{~mL})$ followed by acetic acid $(7.1 \mu \mathrm{~L}, 0.124$ $\mathrm{mmol})$ was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.0032 \mathrm{~g}, 0.003 \mathrm{mmol})$ and triphenylstibine $(0.0044 \mathrm{~g}, 0.0124 \mathrm{mmol})$. The reaction was monitored by NMR spectroscopy. After heating at $60^{\circ} \mathrm{C}$ for 4.5 h , the mixture was cooled, concentrated, and flash chromatographed (hexane:ether = 4:1 to 2:1) to give azaspirane $32(0.037 \mathrm{~g}, 86 \%)$. IR $\left(\mathrm{CDCl}_{3}\right)$: 1600 , $1342,1160,1090 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{t}, J=2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H})$, $2.30(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.78$, $145.17,143.87,133.39,129.85,127.99,117.12,107.21,69.49,58.35$, $58.03,52.82,49.79,44.21,36.95,30.75,21.24$. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$: 347.1555. Found: 347.1567.

Preparation of 4-Methylene-7-octenal (33a). Alcohol 25a (5.0 g, 44.6 mmol) was dissolved in ethyl vinyl ether (400 mL) containing mercuric acetate ($11.47 \mathrm{~g}, 36.0 \mathrm{mmol}$). After being refluxed for 30 h , the mixture was cooled, washed with 10% potassium hydroxide ($3 \times$) and brine, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered, and concentrated to give a crude vinyl ether, which was heated at $180-190^{\circ} \mathrm{C}$ for 3 h . The mixture was flash chromatographed (hexane:ether $=10: 1$) to give aldehyde 33a ($2.5 \mathrm{~g}, 41 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 2734,1721,1682,1642 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 9.78(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{dd}, J=1.71,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97(\mathrm{dd}, J=10.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{bs}, 1 \mathrm{H}), 4.74(\mathrm{bs}, 1 \mathrm{H}), 2.59$ $(\mathrm{m}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.54,147.22,138.25,114.89,110.03,41.64,35.39$, 31.68, 27.90. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}$: 138.1045 . Found: 138.1051.

Preparation of 8-(tert-Butyldimethylsiloxy)-11-methoxy-5-methylene-1-undecen-9-yne (34a). A solution of aldehyde 33 a ($0.50 \mathrm{~g}, 3.62 \mathrm{mmol}$)
(34) Cf.: Sonnet, P. E. Synth. Commun. 1976, 6, 21.
in THF (2 mL) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of methyl propargyl ether $(0.76 \mathrm{~g}, 10.9 \mathrm{mmol})$ and n-butylmagnesium chloride (5.0 $\mathrm{mL}, 10.0 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 8 h , then quenched with saturated aqueous ammonium chloride solution, and extracted with ether ($3 x$). The combined layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated, and flash chromatographed (hexane:ether $=2: 1$) to give an alcohol ($0.696 \mathrm{~g}, 92 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 3608,1642,1094 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.82$ $(\mathrm{m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{bs}, 1 \mathrm{H}), 4.78(\mathrm{bs}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.14$ (d, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~m}$, $2 \mathrm{H}), 1.81(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.99$, $138.28,114.60,109.73,87.32,80.79,62.10,59.86,57.61,35.64,35.34$, 31.89, 31.45 .

To a solution of the above alcohol ($0.463 \mathrm{~g}, 2.232 \mathrm{mmol}$) and 2,6 lutidine ($0.51 \mathrm{~mL}, 4.46 \mathrm{mmol}$) in dichloromethane (2 mL) was added TBDMSOTf $(0.76 \mathrm{~mL}, 3.35 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 30 min , the mixture was diluted with dichloromethane, washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (3.5% ether in hexane) to give compound 34a $(0.621 \mathrm{~g}, 86 \%)$. IR (CDCl_{3}): $1640,1254,1096 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=17.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.96$ $(\mathrm{d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}$, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.24(\mathrm{~m}, 6 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 0.91$ (s, 9H), 0.14 (s, 3H), 0.11 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $148.58,138.60,114.66,109.49,88.10,79.88,62.48,59.85,57.35,36.63$, $35.33,31.78,31.32,25.58,17.98,-4.80,-5.34$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right): 265.1625$. Found: 265.1597 . Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2}{ }^{-}$ Si: C, 70.75; H, 10.62. Found: C, 70.47; H, 10.27.

Preparation of 2-(tert-Butyldimethylsiloxy)-1-(methoxyethylidene)-7-methylenespiro[4.4]nonane (35a and 36a). Acetic acid ($2.2 \mu \mathrm{~L}, 0038$ mmol) followed by dienyne $34 \mathrm{a}(0.0488 \mathrm{~g}, 0.152 \mathrm{mmol}$) was added to the purple solution formed by adding $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(0.004 \mathrm{~g}, 0.00386$ mmol) to triphenylstibine $(0.0054 \mathrm{~g}, 0.0153 \mathrm{mmol})$ in 1.0 mL of benzene. The reaction mixture was stirred at room temperature for 72 h , concentrated, and flash chromatographed (6% ether in hexane) to give spiranes 35 a and $36 \mathrm{a}(0.042 \mathrm{~g}, 86 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.45(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.334(\mathrm{~s}$, $1.5 \mathrm{H}), 3.332(\mathrm{~s}, 1.5 \mathrm{H}), 2.19-2.51(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.90(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~s}$, $5.2 \mathrm{H}), 0.88(\mathrm{~s}, 3.8 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 154.39,154.23,152.27,120.02,119.90,105.87,105.70,73.24$, $73.01,69.96,57.85,51.91,48.42,46.76,40.21,39.21,35.64,35.48,33.82$, $31.07,30.89,25.61,17.69,-4.18,-5.01$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}-\right.$ ${ }^{1} \mathrm{C}_{4} \mathrm{H}_{9}$): 265.1624. Found: 265.1597.

Preparation of 8-(tert-Butyldimethylsiloxy)-11-methoxy-7,7-dimethyl5 -methylene-1-undec-9-yne (34b). To a stirred cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of alcohol $25 \mathrm{a}(21.95 \mathrm{~g}, 196 \mathrm{mmol})$ and pyridine $(1.5 \mathrm{~mL})$ in ether (170 mL) was added over 0.5 h a solution of phosphorus tribromide $(9.3 \mathrm{~mL}$, 98 mmol) in ether (50 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and, while still cool, was poured slowly into saturated aqueous sodium bicarbonate solution at $0^{\circ} \mathrm{C}$, allowing for frothing. The mixture was extracted with ether. The combined ether layers were washed with saturated aqueous sodium bicarbonate solution and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was filtered through a silica gel plug, eluting with pentane, and the pentane was removed to give rather pure bromide $(19.0 \mathrm{~g}, 55 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 1641,1439,1211 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{bs}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H})$, 4.98 (bs, 1 H), $3.97(\mathrm{~s}, 2 \mathrm{H}), 2.20-2.37(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 145.04,137.87,115.42,115.23,36.58,32.39,31.33$.

The cyclohexylimine of isobutyraldehyde ${ }^{35}(1.92 \mathrm{~g}, 12.57 \mathrm{mmol})$ in THF (2 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$ to LDA prepared from diisopropylamine ($1.76 \mathrm{~mL}, 12.57 \mathrm{mmol}$) and n-butyllithium (7.86 mL , 12.57 mmol) dropwise in THF (20 mL). The mixture was stirred for 3 h and then cooled to- $78^{\circ} \mathrm{C}$. A solution of 2-(bromomethyl)-1,5-hexadiene $(2.0 \mathrm{~g}, 11.43 \mathrm{mmol})$ in THF (2 mL) was added dropwise. The mixture was stirred for 7 h . At this point, the bath temperature reached $-10^{\circ} \mathrm{C}$. Hydrochloric acid ($4 \mathrm{~N}, 15 \mathrm{~mL}$) was added dropwise. The mixture was stirred at room temperature for 12 h , and neutralized by addition of solid sodium bicarbonate and water (40 mL). The mixture was extracted with ether ($3 \times 50 \mathrm{~mL}$), washed with brine $(50 \mathrm{~mL})$, dried (MgSO_{4}), filtered, concentrated, and flash chromatographed (hexane:ether $=20: 1$) to give aldehyde 33b as a light yellow liquid ($1.46 \mathrm{~g}, 77 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 2712$, 1724, 1641, $1468 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.54(\mathrm{~s}, 1 \mathrm{H})$, 5.78 (ddt, $J=16.7,10.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H}), 1.06$
(35) DeJeso, B.; Pommier, J.-C. J. Organomet. Chem. 1976, 122, 123.
($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.52,145.00,138.21,114.92$, $114.01,46.09,43.75,36.28,31.81,21.61$.

A solution of aldehyde $\mathbf{3 3 b}(0.516 \mathrm{~g}, 3.11 \mathrm{mmol})$ in THF (2 mL) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of lithiated methyl propargyl ether prepared from the ether $(0.545 \mathrm{~g}, 7.78 \mathrm{mmol})$ and n-butyllithium (4.47 $\mathrm{mL}, 7.15 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$. After the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h , the cooling bath was removed, and stirring was continued for an additional 5 h . The mixture was quenched with saturated aqueous ammonium chloride solution, extracted with ether ($3 \times 20 \mathrm{~mL}$), washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (hexane:ether $=2: 1$) to give an alcohol as a colorless liquid $(0.61 \mathrm{~g}, 83 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 3612,3078,2933,1639,1449,1187$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=17.7$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$ $(\mathrm{s}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 6 \mathrm{H}), 1.81(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 146.63$, $138.61,114.69,114.13,86.18,82.09,70.35,59.82,57.49,43.51,39.21$, 37.28, 32.33, 23.20, 22.95. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right): 221.1542$. Found: 221.1539.

To a solution of the above alcohol ($0.349 \mathrm{~g}, 1.48 \mathrm{mmol}$) and $2,6-$ lutidine ($0.34 \mathrm{~mL}, 2.96 \mathrm{mmol}$) in dichloromethane (1.5 mL) was added TBDMSOTf $(0.5 \mathrm{~mL}, 2.22 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 40 min , the mixture was diluted with dichloromethane, washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (5% ether in hexane) to give dienyne 34 b (0.49 g, 94.6%). IR (CDCl_{3}): $1638,1467,1383,1362 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=17.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.88 (bs, 1 H), 4.77 (bs, 1 H), 4.15 (d, $J=1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.08(\mathrm{bs}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~m}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $0.14(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.87$, $138.80,114.54,113.58,87.06,81.57,71.36,59.91,57.30,43.23,39.83$, 37.54, 32.44, 25.64, 23.08,22.96, 18.01, -4.58,-5.46. Calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{2-}$ Si $\left(\mathbf{M}^{+}-{ }^{1} \mathrm{C}_{4} \mathrm{H}_{9}\right)$: 293.1937. Found: 293.1929.

Preparation of 2-(tert-Butyldimethylsiloxy)-1-(methoxyethylidene)-3,3-dimethyl-7-methyl-enespiro[4.4]nonane (35b). Acetic acid ($1.7 \mu \mathrm{~L}$, 0.030 mmol) followed by substrate $34 \mathrm{~b}(0.0525 \mathrm{~g}, 0.15 \mathrm{mmol})$. was added to a purple solution generated from $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.0039 \mathrm{~g}$, 0.00375 mmol) and triphenylstibine ($0.0053 \mathrm{~g}, 0.015 \mathrm{mmol}$) in 1.0 mL of benzene. The reaction mixture was stirred at room temperature for 24 h , concentrated, and flash chromatographed (5% ether in hexane) to give $35 \mathrm{~b}(0.046 \mathrm{~g}, 88 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 1656 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 5.45(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 3 \mathrm{H}), 3.32$ $(\mathrm{s}, 3 \mathrm{H}), 2.27-2.48(\mathrm{~m}, 4 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.60(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.82$ $(\mathrm{s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $155.98,152.53,119.31,105.39,80.41,70.40,57.75,52.92,50.86,50.77$, $41.93,40.47,30.95,26.37,25.73,23.32,18.12,-4.58,-4.80$. Calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right): 335.2407$. Found: 335.2414 .

Preparation of 2,5-Bis(methylene)-8-nonen-1-ol (37a). 2-(Bromo-methyl)-1,5-hexadiene $(18.8 \mathrm{~g}, 107.0 \mathrm{mmol})$ in ether (50 mL) was added dropwise at $-78^{\circ} \mathrm{C}$ to methallyl alcohol ($15.1 \mathrm{~mL}, 179.0 \mathrm{mmol}$) which was metalated as previously described by n-butyllithium ($35.8 \mathrm{~mL}, 358.0$ mmol) complexed with TMEDA ($54.0 \mathrm{~mL}, 358.0 \mathrm{mmol}$) in dry ether $(300 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h and room temperature for 4.5 h . After quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (150 mL), the organic layer was washed with water (100 mL), saturated aqueous CuSO_{4} solution $(2 \times 100 \mathrm{~mL})$, water $(100 \mathrm{~mL})$, and brine (100 mL) respectively, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (hexane:ether =4:1) to give alcohol 37a (15.0 $\mathrm{g}, 84.4 \%$). IR $\left(\mathrm{CDCl}_{3}\right)$: 3614, 3080, 2980, 2936, 2860, 2250, 1642, $1450,1051,1012 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.83$ (ddt, J $=17.010 .4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{bs}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{bs}, 1 \mathrm{H})$, 4.77 (bs, 2H), 4.70 (bs, 2H), 2.2 (m, 6H), $2.15(\mathrm{~m}, 2 \mathrm{H}), 1.39$ (bs, 1H). ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.68,148.50,138.36,114.56,109.50$, $109.39,65.95,35.34,34.21,31.94,31.09$. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 166.1358. Found: 166.1351.

Preparation of Methyl 2,5-Bis(methylene)-8-nonenylCarbonate (37b). To a solution of alcohol $37 \mathrm{a}(1.08 \mathrm{~g}, 6.51 \mathrm{mmol})$, DMAP $(0.01 \mathrm{~g})$, and pyridine ($1.58 \mathrm{~mL}, 19.53 \mathrm{mmol}$) in dichloromethane $(10 \mathrm{~mL})$ was added methyl chloroformate ($1.50 \mathrm{~mL}, 19.53 \mathrm{mmol}$) slowly at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 10 min and at room temperature for 1 h , the mixture was diluted with dichloromethane $(50 \mathrm{~mL})$, washed with water $(2 \times 50 \mathrm{~mL})$ and brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (hexane:ether $=10: 1$) to give carbonate 37 b as a colorless liquid ($1.24 \mathrm{~g}, 85 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 1750,1640,1448,1272$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.82$ (ddt, $J=17.0,10.3,6.7$
$\mathrm{Hz}, 1 \mathrm{H}), 5.09$ (s, 1H), 5.03 (dd, $J=17.0 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (s, 1H), $4.96(\mathrm{dd}, J=10.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $2.21(\mathrm{~m}, 6 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.94$, $148.39,143.26,138.54,114.71,113.25,169.73,70.28,54.71,35.15,33.79$, 31.77, 30.99. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17}\left(\mathrm{M}^{+}-\mathrm{OCOCH}_{3}\right)$: 149.1331. Found: 149.1317. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$: $\mathrm{C}, 69.61 ; \mathrm{H}, 8.99$. Found: C , 69.82; H, 9.24.

Preparation of $\mathbf{1 0 , 1 0 - B i s (m e t h o x y c a r b o n y l) - 5 , 8 - b i s (m e t h y l e n e) - 1 - ~}$ tridecen-12-yne (39a). A solution of carbonate 37 b ($0.672 \mathrm{~g}, 3.0 \mathrm{mmol}$) and dimethyl propargylmalonate $(0.612 \mathrm{~g}, 3.60 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added at room temperature to a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.0687$ $\mathrm{g}, 0.075 \mathrm{mmol})$ and triphenylphosphine $(0.1572 \mathrm{~g}, 0.60 \mathrm{mmol})$ in dry THF (2.0 mL). The mixture was stirred at $45^{\circ} \mathrm{C}$ for 16 h , cooled, concentrated, and flash chromatographed (hexane:ether $=10: 1$) to afford the title compound $(0.94 \mathrm{~g}, 98.5 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 3316,1736,1640$, $1440,1298,1210 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.82$ (ddt, J $=17.0,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=17.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (dd, $J=10.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{bs}, 1 \mathrm{H}), 4.89(\mathrm{bs}, 1 \mathrm{H}), 4.73(\mathrm{bs}, 1 \mathrm{H}), 4.72$ (bs, 1H), 3.74 (s, 6H), 2.86 (s, 2H), $2.84(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-2.22$ (m,9H). ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.83,148.67,143.85,138.58$, $115.36,114.69,109.47,79.15,71.78,56.59,52.67,37.24,35.28,34.67$, 31.81, 22.45. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right)$: 287.1648. Found: 287.1630. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$: $\mathrm{C}, 71.67 ; \mathrm{H}, 8.23$. Found: C , 71.44; H, 8.33.

Preparation of 10,10-Bis(phenylsulfonyl)-5,8-bis(methylene)-1-tride-cen-12-yne (39b). A solution of 3,3-bis(phenylsulfonyl)-1-butyne (0.1645 $\mathrm{g}, 0.49 \mathrm{mmol})$ and carbonate $37 \mathrm{~b}(0.1207 \mathrm{~g}, 0.54 \mathrm{mmol})$ in THF (1.5 mL) was added at room temperature to a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ $(0.0101 \mathrm{~g}, 0.0098 \mathrm{mmol})$ and triphenylphosphine $(0.0205 \mathrm{~g}, 0.078 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ overnight, cooled, concentrated, and flash chromatographed (hexane:ether $=2: 1$) to give sulfone 39b ($0.224 \mathrm{~g}, 95 \%$). IR (CDCl_{3}): 3308, 2258, 1639, $1449,1332,1310,1149,1075 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.06 (dd, $J=8.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~m}, 4 \mathrm{H}), 5.82$ (ddt, $J=17.0,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (bs, 1 H$), 5.11$ (bs, 1 H$), 5.03$ (dd, J $=17.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{bs}, 2 \mathrm{H}), 3.40(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~m}, 4 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H})$, $2.00(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.67$, $141.90,138.68,137.78,134.87,131.95,128.69,117.75,114.62,109.70$, $90.70,77.15,75.13,35.30,35.10,34.75,31.86,22.01$. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}-\mathrm{PhSO}_{2}\right)$: 341.1577. Found: 341.1568. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}_{2}$: $\mathrm{C}, 67.19 ; \mathrm{H}, 6.26 ; \mathrm{S}, 13.28$. Found: $\mathrm{C}, 67.45 ; \mathrm{H}, 6.43$; S, 13.45.

Preparation 3,3-Bis(phenylsulfonyl)-1,9-bis(methylene) dispiro[4.1.4.2] tridecane (40 b). A solution of substrate $39 \mathrm{~b}(0.032 \mathrm{~g}, 0.0664 \mathrm{mmol})$ in benzene- $d_{6}(1.0 \mathrm{~mL})$ followed by acetic acid ($3.8 \mu \mathrm{~L}, 0.0664 \mathrm{mmol}$) was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.00172 \mathrm{~g}, 0.00166 \mathrm{mmol})$ and tri-otolylphosphine ($0.00404 \mathrm{~g}, 0.0133 \mathrm{mmol}$). The reaction was monitored by NMR spectroscopy. After 8.5 h , the mixture was concentrated and flash chromatographed (hexane:ether $=2: 1$ to $1: 1$) to give dispirane 40b as an oil $(0.026 \mathrm{~g}, 81 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 1657,1582,1328,1369,1145$, $1076 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{~m}, 2 \mathrm{H})$, $7.60(\mathrm{~m}, 4 \mathrm{H}), 4.85(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H})$, $2.37(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.82(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 154.69,152.11,137.24,137.00,134.70,131.58,131.54,131.45$, $128.89,128.63,106.01,104.74,91.43,53.64,52.29,49.92,47.70,45.58$, $40.94,39.80,39.70,37.84,31.10$. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}-\right.$ $\mathrm{PhSO}_{2} \mathrm{H}$): 340.1497. Found: 340.1484. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 67.19; H, 6.26; S, 13.28. Found: C, 67.51; H, 6.55; S, 13.52 .

Ozonolysis of Dispirane 40b. Ozone was bubbled through a solution of 40 b in methanol (2 mL) at $-78^{\circ} \mathrm{C}$ until a blue color persisted. The solution was purged of excess ozone by bubbling nitrogen through it, and the ozonide was reduced by addition of dimethyl sulfide (1 mL). The mixture was warmed to room temperature. Triethylamine (0.5 mL) was added, and the mixture was stirred at room temperature for 3.5 h , concentrated, and flash chromatographed (ether) to give enone 42 (0.005 g, 79\%). IR (CDCl_{3}): 1737, 1685, 1599, 1457, 1429, 1355, 1241, 1162 cm^{-1}. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.26(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.59$ $(\mathrm{m}, 2 \mathrm{H}), 1.50-2.30(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 219.64$, $209.79,188.88,102.77,58.49,54.69,52.25,49.55,48.15,45.87,38.60$, $37.82,37.74,35.52$. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right): 234.1256$. Found: 234.1245.

Preparation of 1-Methoxy-5,5-bis(phenylsulfonyl)-2-pentyne (38c). Oxone, ${ }^{36} 49.5 \% \mathrm{KHSO}_{5}(42.6 \mathrm{~g}, 69.4 \mathrm{mmol}$), was added portionwise to
(36) Cf.: Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 1287.

1-methoxy-5,5-bis(phenylthio)-2-pentyne ${ }^{37}(2.18 \mathrm{~g}, 6.94 \mathrm{mmol}$, prepared by alkylation of bis(phenylthio)methane with 1-bromo-4-methoxy-2butyne) dissolved in methanol (60 mL) and water (60 mL) at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 24 h , diluted with water $(100 \mathrm{~mL})$, and extracted with ether ($4 \times 60 \mathrm{~mL}$). The combined layers were washed with water $(2 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried (MgSO_{4}), filtered, concentrated, and recrystallized (ethanol) to give the title compound as white needles ($1.64 \mathrm{~g}, 63 \%$), mp 99.5-100.5 ${ }^{\circ} \mathrm{C}$. IR (CDCl_{3}): $1449,1345,1328,1314,1158,1095,1080 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01$ (dd, $J=8.4,1.1 \mathrm{~Hz}, 4 \mathrm{H}$), 7.71 (m, $2 \mathrm{H}), 7.60(\mathrm{~m}, 4 \mathrm{H}), 4.58(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.28(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dt}, J=6.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 138.01,135.05,130.02,129.33,82.01,80.00,79.39,59.63$, 57.57, 16.73. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right): 378.0596$. Found: 378.0609. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}_{2}$: $\mathrm{C}, 57.13 ; \mathrm{H}, 4.79$. Found: $\mathrm{C}, 57.06 ; \mathrm{H}$, 4.41 .

Preparation of 10,10-Bis(phenylsulfonyl)-14-methoxy-5,8-bis(meth-ylene)-1-tetradecen-12-yne (39c). A solution of the above sulfone 38c $(0.15 \mathrm{~g}, 0.40 \mathrm{mmol})$ and carbonate $37 \mathrm{~b}(0.0933 \mathrm{~g}, 0.42 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added at room temperature to a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ $(0.0083 \mathrm{~g}, 0.008 \mathrm{mmol})$ and triphenylphosphine $(0.068 \mathrm{~g}, 0.064 \mathrm{mmol})$ in THF (0.5 mL). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ overnight, cooled, concentrated, and flash chromatographed (hexane:ether $=1: 1$) to give 39c ($0.205 \mathrm{~g}, 97.4 \%$). IR (CDCl_{3}): $1640,1449,1331,1310$, $1145,1095,1086 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04$ (dd, $J=$ $7.3,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~m}, 4 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H})$, $5.10(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J$ $=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{bs}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 4 \mathrm{H}), 2.10$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.67,141.94,138.66$, $137.97,134.77,131.88,128.68,117.71,114.63,109.64,90.67,82.71$, $79.72,59.82,57.52,35.29,34.69,31.84,22.34$. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}$ ($\mathbf{M}^{+}-\mathrm{PhSO}_{2} \mathrm{H}$): 384.1759. Found: 384.1770. Anal. Caled for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{~S}_{2}$: $\mathrm{C}, 66.13 ; \mathrm{H}, 6.51 ; \mathrm{S}, 12.17$. Found: $\mathrm{C}, 66.18 ; \mathrm{H}, 6.66 ; \mathrm{S}$, 12.00 .

Preparation of 3,3-Bis(phenylsulfonyl)-1-(methoxyethylidene)-9methylenedispiro[4.1.4.2] tridecane (40c). A solution of bis-sulfone 39 c $(0.036 \mathrm{~g}, 0.068 \mathrm{mmol})$ in benzene $-d_{6}(1.0 \mathrm{~mL})$ followed by acetic acid $(3.9 \mu \mathrm{~L}, 0.068 \mathrm{mmol})$ was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.00177 \mathrm{~g}, 0.0017$ mmol) and triphenylstibine ($0.0024 \mathrm{~g}, 0.0068 \mathrm{mmol}$). The reaction was monitored by NMR spectroscopy. After standing at room temperature for 15 h , the reaction mixture was concentrated and flash chromatographed (hexane:ether $=1: 1$) to give dispirane 40c $(0.032 \mathrm{~g}, 88.9 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 1650,1582,1445,1328,1310,1145,1078 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.04(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~m}, 4 \mathrm{H}), 5.28$ (m, 1H), $4.83(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~m}$, $2 \mathrm{H}), 2.71$ (bs, 2 H), $2.30(\mathrm{~m}, 2 \mathrm{H}), 2.21$ (bs, 2H), $1.72(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.65$ ($\mathrm{m}, 4 \mathrm{H}$). ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.10,151.81,149.50,149.28$, $137.05,136.81,134.76,131.54,128.93,116.80,106.01,105.80,92.13$, $69.92,58.02,54.55,54.43,52.86,49.81,49.71,47.73,47.53,45.16,45.06$, $41.57,41.43,40.06,39.76,37.94,37.78,35.43,31.28,31.05$. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}-\mathrm{PhSO}_{2} \mathrm{H}\right):$ 384.1759. Found: 384.1746. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{~S}_{2}: \mathrm{C}, 66.13 ; \mathrm{H}, 6.51 ; \mathrm{S}, 12.17$. Found: $\mathrm{C}, 66.20 ; \mathrm{H}, 6.71$; S, 11.90 .

Ozonolysis of Dispirane 40c. Ozone was bubbled through a solution of $40 \mathrm{c}(0.016 \mathrm{~g}, 0.0304 \mathrm{mmol})$ in methanol $(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ as previously described. Elimination and workup as before followed by flash chromatography (ether) gave enone $42(0.006 \mathrm{~g}, 84 \%)$ identical to that obtained previously.

Preparation of Methyl 2,5,8-Tris(methylene)-11-dodecenyl Carbonate ($46 \mathrm{~b}, \boldsymbol{n}=1$). To a solution of alcohol $37 \mathrm{a}(12.0 \mathrm{~g}, 72.29 \mathrm{mmol})$ in carbon tetrachloride (80 mL) was added triphenylphosphine ($24.62 \mathrm{~g}, 93.98$ mmol). ${ }^{38}$ The mixture was refluxed for 1 h and then cooled to room temperature. Hexane (150 mL) was added, and stirring was continued for an additional 5 min . The precipitate of triphenylphosphine oxide was filtered and washed with hexane $(50 \mathrm{~mL})$. The filtrate was concentrated and flash chromatographed (hexane) to give the chloride as a colorless liquid ($10.5 \mathrm{~g}, 78.7 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 3081,2935,1643,1445,1258 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.81$ (m, 1H), 5.14 (s, 1H), 5.03 (dd, $J=17.3 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (s, 2H), 4.06 (s, 2H), $2.33(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 148.37,145.13,138.54,114.75,114.68,109.80,48.25,31.16$, 33.71, 31.79, 30.98.

[^12](38) Cf.; Calzada, J. G.; Hooz, J. Org. Synth. 1974, 54, 63.

The above chloride ($10.0 \mathrm{~g}, 54.2 \mathrm{mmol}$) in ether (20 mL) was added dropwise at $-78^{\circ} \mathrm{C}$ to metalated methallyl alcohol which was prepared as previously described from alcohol ($9.12 \mathrm{~mL}, 108.4 \mathrm{mmol}$), n-butyllithium ($21.68 \mathrm{~mL}, 216.8 \mathrm{mmol}$), and TMEDA ($32.72 \mathrm{~mL}, 216.8 \mathrm{mmol}$) in ether (250 mL) at $0^{\circ} \mathrm{C}$. The mixture was slowly warmed to room temperature overnight and quenched with saturated aqueous ammonium chloride solution. Workup as before followed by flash chromatography (hexane:ether $=4: 1$) gave the alcohol as a yellow oil ($10.9 \mathrm{~g}, 91 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 3620,3080,2935,1644,1451 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.76$ (bs, 4H), 4.10 (bs, 2H), 2.20 (m, 12H), 1.35 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.19,149.05,148.99,138.65,114.66,109.65,109.36$, 65.93, 35.29, 34.19, 31.84, 31.04.

To a solution of this alcohol $(0.62 \mathrm{~g}, 2.82 \mathrm{mmol})$, DMAP (10 g), and pyridine ($0.68 \mathrm{~mL}, 8.46 \mathrm{mmol}$) in dichloromethane (6 mL) was added slowly methyl chloroformate ($0.65 \mathrm{~mL}, 8.46 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 10 min and room temperature for 4 h , the mixture was diluted with dichloromethane (50 mL), washed with water $(2 \times 50$ mL) and brine, (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and flash chromatographed (hexane:ether $=10: 1$) to give carbonate 46b (n $=1$) as a colorless oil $(0.64 \mathrm{~g}, 82 \%)$. IR $\left(\mathrm{CDCl}_{3}\right)$: 1748, 1644, 1444, $1275 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H})$, $5.00(\mathrm{~m}, 3 \mathrm{H}), 4.75(\mathrm{bs}, 4 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.94,149.00,148.80,143.26,138.64$, $114.66,113.28,109.56,109.34,70.28,54.72,35.26,34.17,34.12,33.84$, 31.82, 31.03. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3}: \mathrm{C}, 73.35 ; \mathrm{H}, 9.41$. Found: C, 73.69; H, 9.34.

Preparation of 13,13-Bis(phenylsulfonyl)-17-methoxy-5,8,11-tris-(methylene)-1-heptadecen-15-yne (43c). A solution of 38 c ($0.231 \mathrm{~g}, 0.67$ $\mathrm{mmol})$ and carbonate $46 \mathrm{~b}(n=1)(0.170 \mathrm{~g}, 0.61 \mathrm{mmol})$ in THF $(1.7 \mathrm{~mL})$ was added at room temperature to a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.0158$ $\mathrm{g}, 0.0153 \mathrm{mmol}$) and triphenylphosphine $(0.032 \mathrm{~g}, 0.122 \mathrm{mmol})$ in THF $(0.8 \mathrm{~mL})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ overnight, cooled, concentrated, and flash chromatographed (hexane:ether $=1: 1$) to give $43 \mathrm{c}(0.27 \mathrm{~g}, 76 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 1639,1445,13311310,1143,1090$, $1074 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05(\mathrm{dd}, J=7.3,1.2 \mathrm{~Hz}$, $4 \mathrm{H}), 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~m}, 4 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{bs}, 1 \mathrm{H}), 5.10(\mathrm{bs}$, $1 \mathrm{H}), 5.03$ (dd, $J=17.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (dd, $J=10.1,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.74 (bs, 4 H), $3.82(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24$ $(\mathrm{s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.21(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.10,141.96,138.69,137.98,134.77,131.88,128.92$, $128.69,117.71,114.59,109.46,109.36,90.66,82.71,79.73,59.82,57.52$, 35.36, 35.27, $34.71,34.33,31.88,22.35$. Calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{PhSO}_{2} \mathrm{H}\right): 438.2229$. Found: 438.2252 . Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{~S}_{2}$: C, 68.24; H, 6.94. Found: C, 68.30; H, 6.88 .

Preparation of 3,3-Bis(phenylsulfonyl)-1-(methoxyethylidene)-11methylenetrispiro[4.1.1.4.2.2]heptadecane (44c). A solution of substrate $43 \mathrm{c}(0.032 \mathrm{~g}, 0.055 \mathrm{mmol})$ in benzene $-d_{6}(0.9 \mathrm{~mL})$ followed by acetic acid $(3.2 \mu \mathrm{~L}, 0.050 \mathrm{mmol})$ was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.00143 \mathrm{~g}$, 0.00138 mmol) and triphenylstibine ($0.00194 \mathrm{~g}, 0.0055 \mathrm{mmol}$). The reaction was monitored by NMR spectroscopy. After standing at 41-43 ${ }^{\circ} \mathrm{C}$ for 38 h , the reaction mixture was concentrated and flash chromatographed (hexane:ether $=1: 1$) to give trispirane $44 \mathrm{c}(0.027 \mathrm{~g}, 84 \%)$. IR (CDCl_{3}): 1448, 1329, 1310, 1145, $1078 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.05(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~m}, 4 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 4.82$ $(\mathrm{m}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~m}$, $2 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.81(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.71,152.67,149.82,149.60,137.09,136.96,136.93$, $134.73,131.55,128.91,116.61,105.56,105.47,92.23,69.94,58.01,55.78$, $54.41,53.58,50.24,50.18,50.15,50.11,48.13,48.06,45.22,41.69,40.75$, $40.67,40.46,40.38,37.85,35.51,31.31,31.26$. Calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~S}$ $\left(\mathrm{M}^{+}-\mathrm{PhSO}_{2} \mathrm{H}\right): 438.2229$. Found: 438.2220. Anal. Caled for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{~S}_{2}$: $\mathrm{C}, 68.24 ; \mathrm{H}, 6.94$. Found: $\mathrm{C}, 68.57 ; \mathrm{H}, 6.57$.

Ozonolysis of Trispirane 44c. Ozone was bubbled through a solution of $44 \mathrm{c}(0.043 \mathrm{~g}, 0.074 \mathrm{mmol})$ in dichloromethane $(2 \mathrm{~mL})$ and methanol (4 mL) at $-78^{\circ} \mathrm{C}$ until a blue color persisted. Reaction, workup, and elimination with 1.0 mL of triethylamine as previously described gave after flash chromatography (ether) enone 45 ($0.010 \mathrm{~g}, 47 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 2942,2860,1736,1684,1599,1355,1241,1169 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.52(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.70(\mathrm{~m}$, $2 \mathrm{H}), 2.00-2.30(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.97(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 219.70,219.63,209.90,188.50,102.95,102.85,102.66,102.58$, $58.78,58.59,58.39,58.18,54.98,53.38,53.27,53.13,53.05,52.99,52.91$, $52.45,52.25,51.88,51.80,51.72,51.59,51.56,51.53,51.43,51.29,47.46$, $46.37,46.23,46.08,41.49,41.39,41.28,41.18,41.10,41.04,39.85,39.67$,
39.57, 38.36, 38.26, 38.15, 37.98, 37.93, 37.85, 37.78, 37.12, 37.00, 36.83. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 288.1725 . Found: 288.1711.

Preparation of Methyl 2,5,8,11-Tetrakis(methylene)-14-pentadecenyl Carbonate (46b) $(n=2)$. To a solution of alcohol $46 \mathrm{~m}(n=1)(10.0 \mathrm{~g}$, 45.45 mmol) in carbon tetrachloride (50 mL) was added triphenylphosphine $(4.29 \mathrm{~g}, 54.45 \mathrm{mmol})$. The mixture was heated at reflux for 1.5 h and then cooled to room temperature. Hexane (150 mL) was added, and stirring was continued for an additional 5 min . The precipitate of triphenylphosphine oxide was filtered and washed with hexane (50 mL). The filtrate was concentrated and flash chromatographed (hexane) to give the chloride as a colorless oil $(8.50 \mathrm{~g}, 78 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 3081$, $2934,1644,1445 \mathrm{~cm}^{-1}$. 'H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.81(\mathrm{~m}, 1 \mathrm{H})$, $5.14(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=17.21 .6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H})$, $2.18(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.01,148.79,145.17$, 138.64, 114.68, 109.66, 109.40, 48.23, 35.28, 34.23, 34.15, 33.79, 31.85, 31.06.

The above chloride ($8.20 \mathrm{~g}, 34.38 \mathrm{mmol}$) in ether (10 mL) was added dropwise at $-78^{\circ} \mathrm{C}$ to lithiated methallyl alcohol which was prepared from the alcohol ($5.79 \mathrm{~mL}, 68.76 \mathrm{mmol}$) by metalation with n-butyllithium $(13.75 \mathrm{~mL}, 137.5 \mathrm{mmol})$ and TMEDA ($20.75 \mathrm{~mL}, 137.52 \mathrm{mmol}$) in ether (150 mL) at $0^{\circ} \mathrm{C}$. The mixture was slowly warmed to room temperature overnight and then quenched with saturated aqueous ammonium chloride solution. The normal workup followed by flash chromatography (hexane:ether $=4: 1$) gave alcohol 46a $(n=2)$ as a colorless oil ($7.20 \mathrm{~g}, 76 \%$). IR (CDCl_{3}): $3611,3080,2933,1644,1450$ $\mathrm{cm}^{-1} .^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.00$ (m, 2H), $4.90(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{bs}, 6 \mathrm{H}), 4.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~m}$, $6 \mathrm{H}), 1.35(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.47$, $149.20,149.12,148.98,138.67,114.67,109.66,109.39,109.32,109.18$, $65.95,35.29,34.24,34.15,31.84,31.02$.

To a solution of alcohol $46 \mathrm{a}(n=2)(0.86 \mathrm{~g}, 3.14 \mathrm{mmol})$, DMAP $(0.01$ g), and pyridine ($0.76 \mathrm{~mL}, 9.42 \mathrm{mmol}$) in dichloromethane (8 mL) was added slowly methyl chloroformate $(0.72 \mathrm{~mL}, 9.42 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 10 min and at room temperature for 4 h , the mixture was diluted with dichloromethane $(50 \mathrm{~mL})$, washed with water $(2 \times 50$ mL) and brine (50 mL), dried (MgSO_{4}), filtered, concentrated, and flash chromatographed (hexane:ether $=10: 1$) to give carbonate $46 \mathrm{~b}(n=2)$ as a colorless oil ($0.97 \mathrm{~g}, 93 \%$). IR (CDCl_{3}): 1747, 1644, 1444, 1275 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.00$ (m, 3H), 4.75 (bs, 6H), $4.60(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.94,149.40,149.09,148.80,143.26$, $138.65,114.65,113.27,109.57,109.31,109.17,70.27,54.72,35.27,34.23$, 34.17, 33.83, 31.84, 31.03. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right):$332.2353. Found: 332.2366. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}$: C, 75.86; H, 9.70. Found: C, 75.94; H, 9.58.

Preparation of 16,16-Bis(phenylsulfonyl)-20-methoxy-5,8,11,14-tet-rakis(methylene)-1-icosen-18-yne (47a). A solution of bis-sulfone 38c ($0.185 \mathrm{~g}, 0.49 \mathrm{mmol}$) and carbonate $46 \mathrm{~b}(n=2)(0.148 \mathrm{~g}, 0.45 \mathrm{mmol})$ in THF (1.5 mL) was added at room temperature to a mixture of Pd_{2} $(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.01164 \mathrm{~g}, 0.0113 \mathrm{mmol})$ and triphenylphosphine $(0.0257$ $\mathrm{g}, 0.098 \mathrm{mmol}$) in THF (0.5 mL). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 17 h , cooled, concentrated, and flash chromatographed (hexane: ether $=2: 1$ to $1: 1)$ to give compound $47 \mathrm{a}(0.205 \mathrm{~g}, 72 \%)$. IR $\left(\mathrm{CDCl}_{3}\right)$: $1638,1445,1331,1310,1145,10901075 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.04(\mathrm{dd}, J=8.6,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~m}, 4 \mathrm{H})$, $5.83(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{bs}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=17.1,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.96(\mathrm{dd}, J=10.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 6 \mathrm{H}), 3.82(\mathrm{t}, J=2.0 \mathrm{~Hz}$, 2 H), 3.46 (t, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.24 ($\mathrm{s}, 3 \mathrm{H}$), 3.10 (s, 2H), 2.42 (m, 2H), $2.18(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.55,149.16,149.11$, $141.98,138.68,137.99,134.77,131.89,128.68,117.71,114.61,109.47$, $109.34,109.18,90.67,82.72,79.74,59.82,57.52,35.38,35.28,34.72$, 34.39, 31.89, 22.36. Calcd for $\mathrm{C}_{3} 7 \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{~S}_{2}$: 634.2787. Found: 634.2739. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{~S}_{2}$: C, 70.00; H, 7.30. Found: C, 69.70; H, 7.28.

Preparation of 3,3-Bis(phenylsulfonyl)-1-(methoxyethylidene)-13methylenetetraspiro[4.1.1.1.4.2.2.2]henicosane (48a). A solution of substrate $47 \mathrm{a}(0.035 \mathrm{~g}, 0.055 \mathrm{mmol})$ in benzene- $d_{6}(1.0 \mathrm{~mL})$ followed by acetic acid $(3.2 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$ was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.00143$ $\mathrm{g}, 0.00138 \mathrm{mmol}$), and triphenylstibine ($0.00194 \mathrm{~g}, 0.0055 \mathrm{mmol}$). The reaction was monitored by NMR spectroscopy. After standing at 53-55 ${ }^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was cooled, concentrated, and flash chromatographed (hexane:ether $=2: 1$ to 1:1) to give tetraspirane 48a ($0.030 \mathrm{~g}, 85.7 \%$). IR (CDCl_{3}): $1448,1329,1310,1145,1079 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~m}, 4 \mathrm{H})$, $5.25(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.31$
(m, 2H), $2.70(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.80(\mathrm{~m}, 20 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.01,149.65,137.13,136.98,134.72$, $131.55,128.91,116.57,105.29,92.25,69.95,58.00,56.31,56.22,56.14$, $56.01,55.91,54.41,53.80,53.75,50.59,49.99,49.85,48.06,45.45,45.32$, $41.82,41.75,41.01,40.94,40.84,40.73,40.62,40.49,40.41,40.34$, $38.10,38.05,35.56,35.48,31.39,31.33$. Calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{PhSO}_{2} \mathrm{H}\right):$: 492.2698. Found: 492.2679. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{~S}_{2}$: C, 70.00; H, 7.30. Found: C, 70.33; H, 7.11 .

Ozonolysis of Tetraspirane 48a. Ozone was bubbled through a solution of $48 \mathrm{a}(0.053 \mathrm{~g}, 0.166 \mathrm{mmol})$ in dichloromethane $(2 \mathrm{~mL})$ and methanol (4 mL) at $-78^{\circ} \mathrm{C}$ as previously described. Workup and elimination as before followed by flash chromatography (ether) gave $49 \mathrm{a}(0.010 \mathrm{~g}, 35 \%$). IR (CDCl_{3}): $2941,2858,1735,1683,1598,1355 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.13$ $-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.82(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 220.40,220.32,210.65,210.60,188.98$, $188.90,102.94,102.89,102.79,58.37,55.58,55.50,55.44,55.35,54.98$, $54.76,54.59,54.54,54.36,54.01,53.93,53.83,53.71,53.17,53.12,58.06$, $52.98,51.97,51.82,51.74,51.22,51.13,50.99,50.91,50.58,50.55,49.90$, $49.86,47.05,46.97,46.93,46.26,46.20,41.33,41.16,40.95$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 342.2195. Found: 342.2195.

Preparation of Methyl 2,5,8,11,14-Pentakis(methylene)-17-pentadecenyl Carbonate (46b) $(n=3)$. To a solution of alcohol $46 \mathrm{a}(n=2)(5.80$ $\mathrm{g}, 21.17 \mathrm{mmol}$) in carbon tetrachloride (25 mL) was added triphenylphosphine ($6.66 \mathrm{~g}, 25.40 \mathrm{mmol}$). After reaction and workupas previously described, flash chromatography (hexane) gave the chloride as a light yellow oil $(5.00 \mathrm{~g}, 81 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 3081,2934,1644,1446,1258$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.03$ (dd, $J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (s, 2H), $4.76(\mathrm{~s}, 4 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.42,149.10,148.79,145.13,138.67$, $114.67,109.67,109.33,109.23,48.25,35.29,34.25,34.18,33.76,31.85$, 31.03.

The above chloride ($4.80 \mathrm{~g}, 16.41 \mathrm{mmol}$) in ether (20 mL) was added dropwise at $-78^{\circ} \mathrm{C}$ to lithiated methallyl alcohol generated from the latter ($2.76 \mathrm{~mL}, 32.80 \mathrm{mmol}$) with n-butylithium ($6.56 \mathrm{~mL}, 65.6 \mathrm{mmol}$) and TMEDA ($9.90 \mathrm{~mL}, 65.6 \mathrm{mmol}$) in ether (150 mL) at $0^{\circ} \mathrm{C}$. After reaction and workup as previously described, flash chromatography (hexane:ether $=4: 1$) gave alcohol $46 \mathrm{~b}(n=3)$ as a colorless oil (4.20 g , 78%). IR $\left(\mathrm{CDCl}_{3}\right): 3612,2935,1644,1450,1439 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{bs}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{bs}$, $1 \mathrm{H}), 4.76(\mathrm{bs}, 8 \mathrm{H}), 4.09(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.52,149.46,149.18,149.12,148.96,138.66$, $114.66,109.64,109.38,109.30,109.19,109.14,65.93,35.28,34.29,34.25$, $34.15,31.84,31.01$.

To a solution of alcohol $46 a(n=3)(1.00 \mathrm{~g}, 3.044 \mathrm{mmol})$, DMAP $(0.10 \mathrm{~g})$, and pyridine $(0.74 \mathrm{~mL}, 9.15 \mathrm{mmol})$ in dichloromethane (10 mL) was added slowly methyl chloroformate ($0.71 \mathrm{~mL}, 9.15 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After reaction and workup as previously described, flash chromatography (hexane:ether $=20: 1$) gave carbonate $\mathbf{4 6 b}(n=3)$ as a colorless oil ($1.01 \mathrm{~g}, 85.8 \%$). IR (CDCl_{3}): $1748,1644,1444,1274 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~m}$, $3 \mathrm{H}), 4.76(\mathrm{~s}, 8 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 20 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.94,149.50,149.41,149.10,148.79,143.26$, $138.66,114.65,113.28,109.57,109.30,109.19,109.14,70.27,54.72$, $35.28,34.27,34.23,34.17,33.83,31.83,31.02$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{3}$: $\mathrm{C}, 77.68 ; \mathrm{H}, 9.91$. Found: $\mathrm{C}, 77.89 ; \mathrm{H}, 10.11$.

Preparation of 19,19-Bis(phenylsulfonyl)-23-methoxy-5,8,11,14,17-pentakis(methylene)-1-tricosen-21-yne (47b). A solution of 38c ($n=3$) ($0.303 \mathrm{~g}, 0.80 \mathrm{mmol}$) and carbonate $46 \mathrm{~b}(0.294 \mathrm{~g}, 0.762 \mathrm{mmol}$) in THF $(2.0 \mathrm{~mL})$ at room temperature was added to a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ ($0.01972 \mathrm{~g}, 0.01905 \mathrm{mmol}$) and triphenylphosphine ($0.03982 \mathrm{~g}, 0.152$ $\mathrm{mmol})$ in THF (1.0 mL). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ overnight, cooled, concentrated, and flash chromatographed (hexane: ether $=1.5: 1$) to give substrate 47 b as a light brown oil $(0.48 \mathrm{~g}, 91.6 \%)$. IR (CDCl_{3}): $1643,1448,1336,1312,1148,1078 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04$ (dd, $\left.J=8.6,1.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~m}$, $4 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{bs}, 1 \mathrm{H}), 5.11(\mathrm{bs}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=17.1,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.96$ (d, $J=10.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 8 \mathrm{H}), 3.82(\mathrm{t}, J=1.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~m}$, 2 H), 2.18 (m, 18H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.47,149.07$, $149.00,141.81,138.63,137.69,134.83,131.80,128.69,117.69,114.63$, $109.39,109.28,109.10,90.33,82.60,79.63,59.74,57.51,25.25,35.11$, 34.54, 34.21, 31.81, 22.26. Calcd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}-\mathrm{PhSO}_{2} \mathrm{H}\right)$: 546.3168. Found: 546.3176.

Preparation of 3,3-Bis(phenylsulfonyl)-1-(methoxyethylidene)-15methylenepentaspiro[4.1.1.1.1.4.2.2.2.2]pentacosane (48b). A solution of substrate $47 \mathrm{~b}(0.0495 \mathrm{~g}, 0.0719 \mathrm{mmol})$ in benzene- $d_{6}(1.0 \mathrm{~mL})$ followed by acetic acid $(4.1 \mu \mathrm{~L}, 0.0719 \mathrm{mmol})$ at room temperature was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.00186 \mathrm{~g}, 0.00180 \mathrm{mmol})$, and triphenylstibine ($0.00254 \mathrm{~g}, 0.00719 \mathrm{mmol}$). After standing at $60-65^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was cooled, concentrated, and flash chromatographed (hexane:ether $=15: 1$) to give pentaspirane 48b as a colorless oil (0.039 $\mathrm{g}, 78.8 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 1602,1585,1448,1329,1311,1148,1079 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03$ (m, 4H), 7.72 (m, 2H), $7.60(\mathrm{~m}$, $4 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H})$, $3.31(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.80(\mathrm{~m}$, 26 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.22,153.16,149.56,136.78$, $136.61,134.80,131.50,128.92,116.39,105.25,91.87,69.89,58.06,56.37$, $56.19,55.90,55.76,54.26,53.60,53.52,53.48,50.33,50.25,50.16,49.86$, $49.76,48.05,45.28,45.15,41.70,41.65,41.12,41.01,40.82,40.68,40.58$, $40.31,38.00,37.91,35.41,35.34,31.35$. Calcd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}-\right.$ $\mathrm{PhSO}_{2} \mathrm{H}$): 546.3168. Found: 546.3150. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{~S}_{2}$: C, 71.48; H, 7.61; S, 9.31. Found: C, 71.70; H, 7.89; S, 9.01 .

Ozonolysis of Pentaspirane $\mathbf{4 8 b}$. Ozone was bubbled through a solution of $48 \mathrm{~b}(0.062 \mathrm{~g}, 0.090 \mathrm{mmol})$ in dichloromethane (2 mL) and methanol $(4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ as previously described. Reaction, elimination, and workup as before followed by flash chromatography (ether) gave enone 49b ($0.012 \mathrm{~g}, 34 \%$). IR (CDCl_{3}): $1734,1683,1598,1355 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.24$ (s, 1 H), 3.82 ($\mathrm{s}, 3 \mathrm{H}$), 2.50-2.68 (m, 2H), 1.84-2.28 (m, 8H), 1.48-1.80 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 220.06,210.29,188.64,188.56,136.76,102.95,102.83,102.70$, $102.57,102.51,58.70,58.52,58.35,58.19,56.34,56.28,56.21,56.06$, $56.02,55.85,55.73,55.60,55.52,55.10,54.99,54.82,54.72,54.62,54.13$, $54.00,53.94,53.82,53.34,53.20,53.07,53.02,52.22,52.15,52.01,51.95$, $51.89,51.22,51.05,50.98,50.47,50.41,50.26,50.22,47.17,47.11,47.08$, $46.45,46.39,46.31,46.19,41.60,41.54,41.41,41.33,41.03,40.84,40.70$, $40.58,40.22,40.15,40.08,39.99,38.47,38.38,38.29,38.19,38.05,37.97$, 37.92, 37.04. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right): 396.2664$. Found: 396.2654 .

Preparation of 2,5,8,11,14,17-Hexakis(methylene)-20-henicosenyl Carbonate $(46 \mathrm{~b})(n=4)$. To a solution of alcohol $46 \mathrm{a}(n=3)(2.86 \mathrm{~g}, 8.72$ mmol) in carbon tetrachloride (10 mL) was added triphenylphosphine ($2.74 \mathrm{~g}, 10.46 \mathrm{mmol}$). Reaction and workup as previously described followed by flash chromatography (hexane) gave the chloride as a colorless oil ($2.10 \mathrm{~g}, 70 \%$). IR (CDCl_{3}): 1644, 1446, $1258 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=17.2,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 6 \mathrm{H})$, $4.06(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 149.52,149.43,149.13,148.78,145.14,138.67,114.67,109.67$, $109.31,109.25,109.16,48.26,35.29,34.25,34.18,33.76,31.85,31.03$.

The above chloride ($1.90 \mathrm{~g}, 5.48 \mathrm{mmol}$) in ether (5 mL) was added dropwise at $-78^{\circ} \mathrm{C}$ to lithiated methallyl alcohol generated from the latter ($0.92 \mathrm{~mL}, 10.96 \mathrm{mmol}$), n-butylithium ($2.20 \mathrm{~mL}, 22.0 \mathrm{mmol}$), and TMEDA ($3.31 \mathrm{~mL}, 21.92 \mathrm{mmol}$) in ether (20 mL) at $0^{\circ} \mathrm{C}$. After reaction and workup as previously described, flash chromatography (hexane:ether $=4: 1)$ gave alcohol $46 \mathrm{a}(n=4)$ as a colorless oil $(1.25 \mathrm{~g}, 60 \%)$. IR $\left(\mathrm{CDCl}_{3}\right): 3620,1644,1450 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.84$ $(\mathrm{m}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{bs}, 10 \mathrm{H}), 4.10$ $(\mathrm{d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 24 \mathrm{H}), 1.37(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.51,149.45,149.17,149.12,148.96,138.65$, $114.66,109.64,109.39,109.31,109.16,65.93,35.28,34.28,34.24,34.14$, 31.83, 31.00 .

To a solution of alcohol $46 \mathrm{a}(n=4)(1.10 \mathrm{~g}, 2.88 \mathrm{mmol})$, DMAP $(0.01$ g), and pyridine ($0.70 \mathrm{~mL}, 8.64 \mathrm{mmol}$) in dichloromethane $(10 \mathrm{~mL})$ was added slowly methyl chloroformate ($0.67 \mathrm{~mL}, 8.64 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. Usual reaction and workup followed by flash chromatography (hexane:ether $=$ 20:1) gave carbonate 46b $(n=4)$ as a colorless oil ($1.13 \mathrm{~g}, 89.2 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 1748,1644,14441275 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 3 \mathrm{H}), 4.76(\mathrm{~s}, 10 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.94$,
$149.50,149.40,149.10,148.79,143.26,138.66,114.66,113.28,109.58$, $109.30,109.15,70.27,54.72,35.28,34.28,34.24,34.17,33.84,31.84$, 31.02. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{3}: \mathrm{C}, 79.04 ; \mathrm{H}, 10.06$. Found: $\mathrm{C}, 79.14$; H, 10.31.

Preparation of 22,22-Bis(phenylsulfonyl)-26-methoxy-5,8,11,14,17,-20-hexakis(methylene)-1-hexacosen-24-yne (47c). A solution of 38c $(0.303 \mathrm{~g}, 0.80 \mathrm{mmol})$ and carbonate $46 \mathrm{~b}(n=4)(0.335 \mathrm{~g}, 0.762 \mathrm{mmol})$ in THF (2.0 mL) was added at room temperature to a mixture of $\mathrm{Pd}_{2^{-}}$ $(\mathrm{dba}){ }_{3} \cdot \mathrm{CHCl}_{3}(0.0192 \mathrm{~g}, 0.01905 \mathrm{mmol})$ and triphenylphosphine $(0.0398$ $\mathrm{g}, 0.152 \mathrm{mmol}$) in THF (1.0 mL). The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ overnight, cooled, concentrated, and flash chromatographed (hexane:ether $=1.5: 1$) to give substrate 47 c as a brown oil $(0.50 \mathrm{~g}, 88.4 \%)$. IR (CDCl_{3}): $1043,1448,1336,1312,1148,1098,1078 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~m}$, $2 \mathrm{H}), 5.83$ (m, 1H), 5.25 (bs, 1 H$), 5.11$ (bs, 1 H$), 5.04$ (dd, $J=17.3,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.96$ (dd, $J=10.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ (bs, 10 H), 3.82 (bs, 2H), 3.45 (bs, 2H), 3.24 (s, 3H), 3.10 (s, 2H), 2.44 (m, 2H), 2.18 (m, 22H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.48,149.07,148.99,141.80,138.63$, 137.69, 134.83, 131.80, 128.69, 117.69, 114.64, 109.39, 109.29, 109.11, $90.33,82.60,79.63,59.73,57.51,35.25,35.10,34.54,34.21,31.81,22.26$. Calcd for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}-\mathrm{PhSO}_{2} \mathrm{H}\right): ~ 600.3637$. Found: 600.3638 .

Preparation of 3,3-Bis(phenylsulfonyl)-1-(methoxyethylidene)-17methylenehexaspiro[4.1.1.1.1.1.4.2.2.2.2.2]nonacosane (48c). A solution of substrate $47 \mathrm{c}(0.0582 \mathrm{~g}, 0.0784 \mathrm{mmol})$ in benzene $-d_{6}(1.0 \mathrm{~mL})$ followed by acetic acid ($4.5 \mu \mathrm{~L}, 0.0784 \mathrm{mmol}$) was added at room temperature to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.00203 \mathrm{~g}, 0.00196 \mathrm{mmol})$, and triphenylstibine ($0.00277 \mathrm{~g}, 0.00784 \mathrm{mmol}$). After standing at $60-65^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was cooled, concentrated, and flash chromatographed (hexane:ether $=1: 1$) to give hexaspirane 48c as a colorless oil (0.0445 $\mathrm{g}, 77 \%)$. IR (CDCl_{3}): $1602,1585,1448,1329,1311,1148,1079 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~m}$, $4 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H})$, $3.31(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.80(\mathrm{~m}$, 32H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.26,153.22,149.59,136.79$, $136.62,134.80,131.50,128.92,116.38,105.20,91.88,69.89,58.06,56.50$, $56.39,56.30,56.21,56.14,55.92,55.82,55.77,54.26,53.54,50.23,49.95$, 49.86, 49.79, 49.58, 48.05, 45.27,45.14,41.80, 41.72, 41.64, 41.18,41.11, 41.06,40.92, 40.83,40.77, 40.64,40.56,40.32, 38.01,37.95,35.42,35.35, 31.36, 31.29. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{~S}_{2}: \mathrm{C}, 72.74 ; \mathrm{H}, 7.87 ; \mathrm{S}, 8.03$. Found: C, 72.60; H, 7.80; S, 8.38.

Ozonolysis of Hexaspirane 48c. Ozone was bubbled through a solution of $48 \mathrm{c}(0.059 \mathrm{~g}, 0.0795 \mathrm{mmol})$ in dichloromethane (2 mL) and methanol (4 mL) as described previously. Workup and elimination followed by flash chromatography (ether) gave enone 49c ($0.024 \mathrm{~g}, 67 \%$). IR $\left(\mathrm{CDCl}_{3}\right): 1734,1683,1598,1355 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.29(\mathrm{~m}, 4 \mathrm{H}), 2.05$ $(\mathrm{m}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.80(\mathrm{~m}, 28 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): $\delta 220.60,210.82,189.07,189.01,188.95,102.93,102.81,58.35$, $56.46,56.37,56.26,56.16,56.10,55.99,55.86,55.76,55.65,55.04,54.83$, $54.77,53.90,53.13,52.15,52.02,51.95,51.14,50.96,50.89,50.35,50.23$, $50.17,50.00,49.92,49.62,47.06,46.97,46.36,46.29,46.23,41.52,41.46$, $41.34,41.06,40.93,40.87,40.78,40.67,40.62,40.37,40.26,40.13,40.01$, $39.96,39.87,38.45,38.34,38.28,38.22,38.06,37.91,37.84,36.92$. Calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right): 450.3134$ Found: 450.3148 .

Acknowledgment. Generous support for our program was provided by the National Science Foundation and the General Medical Sciences Institute of the National Institutes of Health. Mass spectra were provided by the Mass Spectrometry Facility, University of California-San Francisco, supported by the NIH Division of Research Resources.

Supplementary Material Available: Copies of the spectra of the polyspiranes $40 \mathrm{a}-\mathrm{c}, 44 \mathrm{c}$, and $48 \mathrm{a}-\mathrm{c}$ (7 pages). Ordering information is given on any current masthead page.

[^0]: - Abstract published in Advance ACS Abstracts, September 15, 1993.
 (1) For reviews, see: Hoffmann, H. M. R. Angew. Chem. Int. Ed. Engl. 1969, 8, 557. Oppolzer, W.; Snieckus, V. Angew. Chem., Int. Ed. Eng1. 1978, 17, 476. Snider, B. B. Acc. Chem. Res. 1980, 13, 426. Taber, D. F. Intramolecular Diels-Alder and Alder Ene Reactions; Springer-Verlag: Berlin, 1984. Snider, B. B. In Comprehensive Organic Synthesis, Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon Press: London, 1991; Vol. 5, pp 1-28.
 (2) (a) Trost, B. M.; Lautens, M. Chan, C.; Jebaratnam, D. J.; Mueller, T. J. Am. Chem. Soc. 1991, 113, 636 and earlier references cited therein. (b) For overviews, see: Trost, B. M. Acc. Chem. Res. 1990, 23, 34. Trost, B. M. In Studies in Natural Products Chemistry. Stereoselective Synthesis (Part E); Atta-ru-Rahman, Ed.; Elsevier: Amsterdam, 1991; pp 277-282.
 (3) Trost, B. M.; Lee, D. C.; Rise, F. Tetrahedron Lett. 1989, 30, 651.
 (4) Trost, B. M.; Lee, D. C. J. Org. Chem. 1989, 54, 2271. For synthetic applications, see: Trost, B. M.; Chung, J. Y. L. J. Am. Chem. Soc. 1985, 107, 4586. Trost, B. M.; Hipskind, P. A.; Chung, J. Y. L.; Chan, C. Angew. Chem., Int. Ed. Engl. 1989, 28, 1502. Trost, B. M.; Hipskind, P. A. Tetrahedron Lett. 1992, 33, 4541 .
 (5) Heck. R, F. Org. React. (N.Y.) 1982, 27, 345. Heck, R. F. In Comprehensive Organic Synthesis, Trost, B. M., Fleming, I., Semmelhack, M. F., Eds.; Pergamon Press: London, 1991; Vol. 4, Chapter 4.3.

[^1]: (6) Trost, B. M.; Rise, F. J. Am. Chem. Soc. 1987, 109, 3161. Trost, B M.; Braslau, R. L. Tetrahedron Lett. 1988, 29, 1231 . For a synthetic application, see: Trost, B. M.; Edstrom, E. D. Angew. Chem., Int. Ed. Engl. 1990, $29,520$. Trost, B. M.; Kondo, Y. Tetrahedron Lett. 1991, 32, 1613.
 (7) For a preliminary report of a portion of this work, see: Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1991, 113, 701.

[^2]: (8) Gaudin, J. M. Tetrahedron Lett. 1991, 32, 6113. Grigg, R.; Coulter, T. Tetrahedron Lett. 1991, 32, 1359. Owczarczyk, Z.; Lamaty, F.; Vawter, E. J.; Negishi, E. J. Am. Chem. Soc. 1992, 114, 10091.
 (9) Grigg, R.; Stevenson, P.; Worakun, T. Chem. Commun. 1984, 1073. Grigg, R.; Worakun, T. Tetrahedron 1988, 44, 2033. Grigg, R.; Sridharan, V.; Stevenson, P.; Worakun, T. Chem. Commun. 1986, 1697. Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Worakun, T. Tetrahedron Lett. 1988, 29, 4329.
 (10) Abelman, M. M.; Overman, L. E. J. Am. Chem. Soc. 1988, 110, 2328. Carpenter, N. E.; Kucera, D. J.; Overman, L. E. J. Org. Chem. 1989, 54, 5864. In this latter paper, it is reported that addition of more ligand decreased the amount of 6 -endo product, an observation in accord with this interpretation. For a recent synthetic application, see: Overman, L. E.; Ricca, D. J.; Tran, V. D. J. Am. Chem. Soc. 1993, $115,2042$.

[^3]: (11) $\operatorname{BRSM}=$ based upon recovered starting material.
 (12) Trost, B. M.; Molander, G. A. J. Am. Chem. Soc. 1981, 103, 5969. Trost, B. M.; Kuo, G. H.; Benneche, T. J. Am. Chem. Soc. 1988, $110,621$. Trost, B. M.; Li, L.; Guile, S. D J. Am. Chem. Soc. 1992, 114, 8745.
 (13) Trost, B. M.; Runge, T. A.; Jungheim, L. N. J. Am. Chem. Soc. 1980, 108, 2840.

[^4]: (14) For some reviews, see: (a) Trost, B. M. Tetrahedron 1977, 33, 2615. Trost, B. M. Acc. Chem. Res. 1980, 13, 385. (b) Tsuji, J. Organic Synthesis with Palladium Compounds; Springer-Verlag: Berlin, 1980. (c) Trost, B. M.; Verhoeven, T. R. Compr. Organomet. Chem. 1982, 8, 799. Tsuji, J. Tetrahedron 1986, 42, 4361. (d) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1173.

[^5]: (15) Trost, B. M.; Chan, D. M. T.; Nanninga, T. N. Org. Synth. 1984, 62, 58.

[^6]: (16) Compare study of ligand effects in cross-coupling: Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585.

[^7]: (17) For an analogous effect in a Rh-catalyzed reaction, see: Grigg, R.; Stevenson, P.; Worakun, T. Tetrahedron 1988, 44, 4967.
 (18) Also see: Trost, B. M.; Burgess, K. Chem. Commun. 1985, 1084. Negishi, E.-I.; Tour, J. M. Tetrahedron Lett. 1986, 27, 4869. Trost, B. M.; Dumas, J. Tetrahedron Lett. 1993, 34, 19.

[^8]: (19) Cf.: Zhang, Y.; Negishi, E.-I. J. Am. Chem. Soc. 1989, 111, 3454. Grigg, R.; Dorrity, M. J.; Malone, J. F.; Sridharan, V.; Sukirthalingam, S. Tetrahedron Lett. 1990, 31, 1343 . Grigg, R.; Sridharan, V.; Sukirthalingam, S. Tetrahedron Lett. 1991, 32, 3855. Meyer, F. E.; Parsons, P. J.; DeMeijere, A. J. Org. Chem. 1991, 56, 6487.
 (20) Cf.: Oppolzer, W.; DeVita, R. J. J. Org. Chem. 1991, 56, 6256.
 (21) Braslau, R. L. Ph.D. Thesis, University of Wisconsin, 1988.
 (22) Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992, 114,9327.
 (23) Wu, G. Z.; Lamaty, F.; Negishi, E.-I. J. Org. Chem. 1989, 54, 2507.
 (24) Cf.: Madin, A.; Overman, L. E. Tetrahedron Lett. 1992, 33, 4859. Sato, Y.; Watanabe, S.; Shibasaki, M. Tetrahedron Lett. 1992, 33, 2589. (25) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

[^9]: (28) Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 263.
 (29) The order of addition of the two Grignard reagents is critical.

[^10]: (30) Cf.: Hibino, J.-I.; Okazoe, T.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1985, 26, 5579.
 (31) Cf.: Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480.

[^11]: (32) Cf.: Friedrich, L. E.; deVera, N.; Hamilton, M. Synth. Commun. 1980, 10, 637.
 (33) Cf.: Greenwald, R.; Chaykovsky, M.; Corey, E. J. J. Org. Chem. 1963, 28, 1128.

[^12]: (37) Taylor, W. H. J. Am. Chem. Soc. 1935, 57, 1065. Cohen, T.; Ritter, R. H.; Ouellette, D. J. Am. Chem. Soc. 1982, 104, 7142.

